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ABSTRACT

Rhotrix theory is a mathematical framework that extends the classi-

cal notion of matrices to a more generalized form, incorporating ad-

ditional algebraic structures and properties. Rhotrices, the funda-

mental objects in this theory, are defined to handle operations that

traditional matrices cannot efficiently represent, offering a broader

applicability in various mathematical and engineering fields. This

theory provides new avenues for matrix analysis, facilitating the ex-

ploration of higher-dimensional algebraic systems, and can be ap-

plied in areas such as cryptography, signal processing, and control

theory. The development of rhotrix theory involves the study of its

unique operations, properties, and potential applications, aiming

to enrich the toolbox available for solving complex mathematical

problems.
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INTRODUCTION

Rhotrix is a new topic of study in linear mathematical algebra that

focuses on representing an array of integers in rhomboidal shape. A

rhotrix A of dimension three is a rhomboidal array defined as,

R3 =

〈 x

y z p

q

〉

Rhotrix is still under the beginning stages of development as a

concept. Since the concept’s inception in 2003, a number of re-

searchers have expressed interest in advancing and developing it.

Typically, they do this by establishing comparisons between the

notions of matrices and this transformation, which turns a matrix

into a rhotrix.In this sense, rhotrices emerged as a new frame work

in matrix theory, drawing attention from scholars due to its richer

mathematical foundation.

More than forty studies on the Rhotrix idea have been pub-
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CONTENTS

lished in the literature . It is important to note that there are

now two methods in the literature for multiplying rhotrices.The

first is Ajibade’s heart-based approach for multiplying rhotrix.The

second one were created by B. Sani and A. Mohammed using the

row-column based method for rhotrix multiplication, which divided

the 40 articles in the rhotrix theory literature. In this area, B. Sani

made another contribution in by providing row-column multiplica-

tion of higher dimensional rhotrices in, expanding on previous work

on row-column multiplication for dimension three base level rhotri-

ces and a unique matrix known as a ”coupled matrix.” This project

report consists of three chapters. First chapter includes the ba-

sic definition in rhotrix theory. There we define the basic structure

and representation of an arbitrary rhotrix and operations on rhotrix.

Both of the rhotrice multiplication techniques that were discussed

in the preceding paragraphs are defined there. Additionally, we in-

vestigate how to transform a rhotrix into a unique matrix known

as a coupled matrix. The rank of the rhotrix is covered in the sec-

ond chapter. The natural rhotrix, determinant and co-determinant

functions, index of rhotrices are discussed in last chapter
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Chapter 1

SOME FACTS OF RHOTRIX

1.1 Forms of Rhotrix

The terms ”axes,” ”heart,” ”vertex,” and ”rows and columns of a

rhotrix” are defined in this section.

Definition : 1.1. Axes of a Rhotrix: A rhotrix have two axes.

The two axes are the horizontal and vertical axes. An array of

entries that extends from the top to the bottom of a rhotrix forms

its vertical axis. On the other hand, a rhotrix’s horizontal axis is an

array of items that extends from the left to the right. Each rhotrix

has two primary axes: one horizontal and one vertical.

Example : 1.1. R3 =

〈 x

q y p

z

〉
.
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1.1. FORMS OF RHOTRIX

Here vertical axis of the rhotrix R3 is the set of values ”x, y, z

and the horizontal axis is the set of values q, y, p.

Definition : 1.2. Heart of a Rhotrix: The point where the

horizontal and vertical axis intersect is called its Heart, denoted by

h(R), where R is the given rhotrix.

Example : 1.2. R3 =

〈 x

q y p

z

〉

In this case, element y becomes the heart of the rhotrix R3. The

symbol for it is h(R3).

Definition : 1.3. Vertex of a Rhotrix: An entry at any of a

rhotrix’s corners is considered as its vertex.

Example : 1.3. For example

R5 =

〈
x

q p y

t u v w z

k l m

o

〉

Here x, t, o and z. are the vertices of rhotrix
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1.2. HIGHER DIMENSIONAL RHOTRIX

Definition : 1.4. Rows and Columns of a Rhotrix: An array

of entries running from the top-left to the bottom-right of a rhotrix

is called a row. An array of elements running from the top-right to

the left-bottom side of a rhotrix is called a column.

Example : 1.4. For example

R5 =

〈
x

q p y

t u v w z

k l m

o

〉

The first rows is xyz, second row is pw and so on and the first

column is xqt, the second column is pu and so on.

1.2 Higher Dimensional Rhotrix

Definition : 1.5. Dimension of a Rhotrix: A rhotrix’s di-

mension is the number of entries along one of its major vertical

or horizontal axes.. All rhotrices are of odd dimension (≥ 3).. Here

t =n2+1
2 . indicates the cardinality or number of elements of a rhotrix

of dimension n, where n ∈ Z+.
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1.3. OPERATION OF RHOTRICES

Example : 1.5. For example

R5 =

〈
x

q p y

t u v w z

k l m

o

〉

R5 has dimension 5

1.3 Operation Of Rhotrices

1.3.1 Addition of Rhotrix

Only two rhotrices have the same dimension can they be added

together. The sum of the matching elements of two rhotrices is the

definition of their addition. Let R3 and Q3 be two 3-dimensional

rhotrices such that,

R3 =

〈 x

q y p

z

〉
and Q3 =

〈 u

s v w

t

〉

Then their addition is defined as
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1.3. OPERATION OF RHOTRICES

R3 +Q3 =

〈 x

q y p

z

〉
. +

〈 u

s v w

t

〉

=

〈 x+ u

s+ q v + y p+ w

t+ z

〉

1.3.2 Scalar Multiplication of Rhotrix

In scalar multiplication, the given scalar is multiplied by each entry

in a rhotrix.

Let R3 =

〈 x

q y p

z

〉
and α be a scalar number. Then the scalar

multiplication of a rhotrix is defined as

α(R3) = α

〈 x

q y p

z

〉
=

〈 αx

αq αy αp

αz

〉

1.3.3 Multiplication of Rhotrix

Rhotrices can be multiplied in two different ways. Row-column

multiplication and heart-oriented multiplication are these. While
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1.3. OPERATION OF RHOTRICES

row-column multiplication resembles matrix multiplication, heart-

oriented multiplication is connected to the heart of a rhotrix.

Heart Oriented Multiplication

As the name implies, we multiply each element of the first rhotrix

by the heart of the second rhotrix, and we add what comes out to

the product of the corresponding element of the second rhotrix and

the heart of the first rhotrix.

Let R3 =

〈 x

q y p

z

〉
and Q3 =

〈 u

s v w

t

〉

be any two rhotrices, then their heart oriented multiplication is

defined as

R3oQ3 =

〈 x

q y p

z

〉
o

〈 u

s v w

t

〉

=

〈 xv + uy

qv + sy yv pv + wy

zv + ty

〉

Remark : 1.1. When two non-zero rhotrices are multiplied using

heart-oriented multiplication, the outcome is not always a non-zero

rhotrix.
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1.3. OPERATION OF RHOTRICES

Proof. Let R3 =

〈 x

q 0 p

z

〉
and Q3 =

〈 u

s 0 w

t

〉

Let R and Q be two non-zero rhotrices, then from above result,

we have

〈 x

q 0 p

z

〉
o

〈 u

s 0 w

t

〉
=

〈 0

0 0 0

0

〉

Identity Rhotrix for Heart-Oriented Multiplication

The definition of the 3-dimensional identity rhotrix is

I3 =

〈 0

0 1 0

0

〉

Here, I3 is derived as follows. Let I3 =

〈 m

n o d

r

〉
be the identity

rhotrix and R3 =

〈 x

q y p

z

〉
be a rhotrix,
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1.3. OPERATION OF RHOTRICES

where h(Rn) ̸= 0

Since

R3oI3 = I3oR3 = R3

we have

〈 m

r o f

n

〉
o

〈 x

q y p

z

〉
=

〈 x

q y p

z

〉

=

〈 my + xo

qo+ ry oy fy + po

zo+ ny

〉
=

〈 x

q y p

z

〉

According to the definition of rhotrice equality, we have

my + xo = x

qo+ ry = q

oy = y

fy + po = p

zo+ ny = z

By solving the above equations we get

m = n = d = r = 0 and o = 1

17



1.3. OPERATION OF RHOTRICES

Therefore, we obtain

I3 =

〈 0

0 1 0

0

〉

Rhotrix Inverse in Heart-Oriented Multiplication

Let h(R) ̸= 0. and R be a 3-dimensional rhotrix. If a rhotrix P

exist such that

RoQ = PoR = I

then P is referred to as R inverse. Now, we can get a rhotrix’s in-

verse by doing the following:

Let R =

〈 x

q y p

z

〉
be a 3 dimensional rhotrix such that y ̸= 0

If P =

〈 m

r o f

n

〉
is the inverse of P such that

〈 x

q y p

z

〉
o

〈 m

r o f

n

〉
=

〈 0

0 1 0

0

〉
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1.3. OPERATION OF RHOTRICES

〈 my + xo

qo+ ry oy fy + po

zo+ ny

〉
=

〈 0

0 1 0

0

〉

By definition of equality of rhotrices, we get

my + xo = 0

qo+ ry = 0

ry = 1

fr + po = 0

zo+ ny = 0

It follows from that

o = 1
y ,m = −x

y2 , qr =
−q
y2 , s =

−p
y2 and t = −z

y2

Therefore we have

R = P−1 = −1
y2

〈 x

q −y p

z

〉

Remark 1. The inverse of a unit heart rhotrix

〈 x

q 1 p

z

〉
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1.3. OPERATION OF RHOTRICES

where heart is unity is given by

〈 −x

−q 1 −p

−z

〉

A rhotrix If h(R) = 0, then R is invertible.

Proof. If R is invertible then there exist a rhotrix P such that

RoP = I.

h(RoP ) = h(I)

then h(R)h(P ) = 1

h(P ) = 1
h(R)

h(R) ̸= 0.

Remark : 1.2. Heart-oriented rhotrix multiplication is a group

with respect to the set of all invertible 3-dimensional rhotrices

over R.

Proof. Let Q =

{
R =

〈 x

q y p

z

〉
; y ̸= 0, x, q, p, z ∈ N

}

Let R =

〈 x

q y p

z

〉
and S =

〈 m

q n p

o

〉
be two elements in Q.
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1.3. OPERATION OF RHOTRICES

Then RoQ =

〈 x

q y p

z

〉
o

〈 m

u n v

o

〉

=

〈 xn+my

qn+ uy yn pn+ vy

zn+ oy

〉

It is evident that the values of y, n, and yn differ from zero. As a

result, under heart-oriented multiplication, the set Q is closed.

Again for any R, S,A ∈ S we have

A =

〈 d

e f g

h

〉

Ro(SoA) =

〈 x

q y p

z

〉
o

{ 〈 m

u n v

o

〉
o

〈 d

e f g

h

〉}

=

〈 x

q y p

z

〉
o

〈 mydn

uy + qn yn vy + gn

oy + zn

〉

= (RoS)oP

Thus, in the set Q, the heart-oriented multiplication operation is

associative. Also,
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1.3. OPERATION OF RHOTRICES

I=

〈 0

0 1 0

0

〉

is the identity an element of S. Additionally, the fact that each

element of S is invertible suggests that the set S is a group under

the multiplication with a heart orientation.

Row-Column Multiplication

B. Sani discussed about row-column multiplication of rhotrices,

which is an alternate technique for multiplying rhotrices. By mul-

tiplying each row of the first rhotrix by each column of the second

rhotrix, each element in this approach is obtained.

Let R3=

〈 x

q y p

z

〉
and Q3=

〈 l

o m p

n

〉
be two rhotrices.

Then the row-column multiplication of rhotrices R3 and Q3 is given

by,

R3oQ3 =

〈 x

q y p

z

〉
o

〈 l

o m t

n

〉

22



1.3. OPERATION OF RHOTRICES

=

〈 xl + po

ql + zo my xt+ pn

qt+ zn

〉

Identity Rhotrix Under Row-Column Multiplication

Let I3=

〈 l

o m t

n

〉

be the identity rhotrix under multiplication defined. Then, for any

rhotrix R3 we must have

R3oI3 = I3oR3 = R3

Let R3=

〈 e

f g h

i

〉
, c ̸= 0 Then we have

〈 e

f g h

i

〉
o

〈 l

o m t

n

〉
=

〈 e

f g h

i

〉

This gives,

〈 el + ho

fl + io gm et+ fn

ft+ in

〉
=

〈 e

f g h

i

〉

23



1.3. OPERATION OF RHOTRICES

According to the definition of rhotrice equality, we obtain

el + ho = e

fl + io = f

gm = g

et+ fn = h

ft+ in = i

It derives from above that l = o = n = 0, o = t = 0 provided

g(ei− fh) ̸= 0.

Hence,

I3 =

〈 1

0 1 0

1

〉

Inverse of a Rhotrix Under Row-Column Multipilication

The inverse of a rhotrix Q3 is referred to as such if

R3oQ3 = Q3oR3 = I3

Let R3 =

〈 x

y z k

l

〉
and let P3 =

〈 f

g h i

m

〉
be the inverse,
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1.3. OPERATION OF RHOTRICES

then

〈 x

y z k

l

〉
o

〈 f

g h i

m

〉
=

〈 1

0 1 0

1

〉

Therefore,

〈 xf + kg

yf + lg zh xi+ km

yi+ lm

〉
=

〈 1

0 1 0

1

〉

According to the definition of rhotrice equality, we obtain

xf + kg = 1

yf + lg = 0

zh = 1

xi+ km = 0

yi+ lm = 1

It follows from above that

f = l
xl−yk , g = −y

xl−yk , h = 1
c , i =

−k
xl−yk , k = x

xl−yk .

Therefore, Q3 = R−1
3 = 1

xl−yk

〈 l

−y xl−yk
c −k

x

〉

provided c(xl − yk) ̸= 0.
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1.4. COUPLED MATRIX

1.4 Coupled Matrix

A new matrix known as the coupled matrix was introduced by B.

Sani in order to address the question of transforming rhotrices

into matrices and vice versa. This innovative matrix has proven

to be a valuable tool in the field of rhotrix theory, enabling re-

searchers to establish connections between the properties of rhotri-

ces and matrices.

Definition : 1.6. Determinant of a Rhotrix: A three-dimensional

rhotrix’s determinant was defined by B. Sani.

det(R3) = c(ae− bd)

Definition : 1.7. Transpose of a Rhotrix:The transposition of

a given rhotrix Rn is a rhotrix that is obta0ined by changing the

row and column of the rhotrix Rn; it is represented by RT
n .

For example R5 = ⟨

x1

x2 x3 x4

x5 x6 x7 x8 x9

y1 y2 y3

y4

⟩

26



1.4. COUPLED MATRIX

RT
5 = ⟨

x1

x4 x3 x2

x9 x8 x7 x6 x5

y1 y2 y3

y4

⟩

where the entires in the horizontal diagonal arranged its reverse

order and entries of the vertical diagonal remain unchanged.

Coupled Matrix: Any rhotrix or matrix can be transposed by

turning its columns in an anticlockwise direction at a right an-

gle. Similarly, a coupled matrix is created when the columns of

a rhotrix are rotated by 45◦, which is represented by half transpo-

sition T
2 .

Example : 1.6. For a 5-dimensional rhotrix R5,we have

R5=

〈
x11

x21 y11 x13

x31 y12 x22 y21 y13

x32 y22 c23

x33

〉

27



1.4. COUPLED MATRIX

R
T
2
5 =



x11 x12 x13

y11 y12

x21 x22 x23

y21 y22

x31 x32 x33


The complementary component matrix of the couple matrix [AC]5

is denoted by C in this instance


x11 x12 x13

x21 x22 x23

x32 x32 x34

 and the minor

matrix is

y11 y12

y21 y22


An n× n square matrix is obtained by adding zeros to the missing

locations in a coupled matrix. Therefore, upon completion, the

coupled matrix [AC]5 above becomes



x11 0 x12 0 x13

0 y11 0 y12 0

x21 0 x22 0 x23

0 y21 0 y22 0

x31 0 x32 0 x33


a 5 × 5 matrix.[San07]
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Chapter 2

RANK OF RHOTRIX

In this chapter, we examine the rank of a rhotrix and outline its

characteristics, expanding upon concepts within rhotrix theory.

Additionally, we detail the conditions that are both necessary and

sufficient for a linear map to be depicted over a rhotrix.

2.1 Major and Minor Rhotrices

In order to analyze the rank of a rhotrix and its associated prop-

erties, it is essential to establish some fundamental definitions.

Therefore, we will begin by examining these definitions before the

study of rhotrix’s rank.

Definition : 2.1. Let Rn be an n-dimensional rhotrix, defined as

< aij, ckl >. Then, the (i, j) elements (aij) are referred to as the

29



2.1. MAJOR AND MINOR RHOTRICES

main entries of Rn, while the (k, l) entries (ckl) are referred to as

the minor entries of Rn.

Definition : 2.2. The major and minor matrices of a rhotrix

Rn =< aij, ckl > of n−dimension are represented by the coupled

matrices (aij) and (ckl). Therefore, the major and minor matrices

of Rn are, respectively, (aij) and (ckl).

Example For example R5 =

〈
x

y z l

k i g e c

l j h

m

〉

Here the major matrix corresponding to this rhotrix is
x l c

y g h

k l m

 and the minor matrix is

z e

i j



Definition : 2.3. If (bij) = 0 for every i, j whose sum i+j is odd,

then for each odd integer n, a n × nmatrix (bij) is termed a filled

coupled matrix of a rhotrix of dimension n. These entries will be

referred to as the filled coupled matrix’s null entries.

Example : 2.1. For example the filled coupled matrix of R5 is

30



2.1. MAJOR AND MINOR RHOTRICES

given by

x 0 l 0 c

0 z 0 e 0

y 0 g 0 h

0 i 0 j 0

k 0 l m 0


Theorem : 2.1. The set of all n × n filled coupled matrices over

F and the set of all n−dimensional rhotrices (where n is odd)

over F have a one-to-one connection.

Proof. The set of all n−dimensional rhotrices is defined as fol-

lows: for any n−dimensional rhotrix where n is odd, there exists a

n×n matrix (bij), also known as a filled coupled matrix, such that

for any i, j whose sum i+ j is odd, bij = 0.

A n−dimensional rhotrix exists when we examine a n × n filled

couple matrix over F . Thus, the proof can be found by establish-

ing a one-to-one relationship between the set of all n−dimensional

rhotrices over F and d matrices over F .

Definition : 2.4. Assume that Rn =< aij, ckl >R’s main diagonal

was generated by the entires arr(1 ≤ s ≤ t) and css(1 ≤ r ≤ t− 1)

in the major and minor matrices’ respective main diagonals. A

right (left) triangular rhotrix is created when all of the entries on
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2.1. MAJOR AND MINOR RHOTRICES

the left (right) side of the principal diagonal in are zeros. Triv-

ially, we obtain the following lemma.[MB+14]

Lemma : 2.5. Let Rn =< aij, ckl > be a left (right) triangular

rhotrix if and only if (aij) and (ckl are lower (upper) triangular

matrices together.

Proof. The coupled matrix is obtained by rotating the rhotrix 45°

in an anticlockwise manner. The rhotrix is a left(right) triangular

rhotrix if the major and minor matrices are lower(upper) triangu-

lar matrices, and vice versa, based on the major and minor matri-

ces that were derived from the coupled matrix.[MB+14]

Based on this lemma, it is possible to transform any n-dimensional

rhotrix R into a right triangular rhotrix by converting its major

and minor matrix into row echelon form through the application

of elementary row operations.

Example : 2.2. For example

R5 =

〈
1

2 1 1

1 2 2 2 1

1 3 1

1

〉
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2.2. RANK OF RHOTRIX

The major and minor matrix of the rhotrix A is given by B =
1 1 1

2 2 1

1 1 1

 C =

1 2

2 3

 respectively

Now that B and C have been reduced to the row reduced echelon

form (rref), we have rref(B) =


1 1 0

0 0 1

0 0 1

 and rref(C) =

1 0

0 1


At this point, we obtain a rhotrix by joining these two row-reduced

matrices: R5 =

〈
1

0 1 1

0 0 0 0 0

0 1 1

0

〉

The rhotrix above is obviously a right triangular rhotrix.

2.2 Rank of Rhotrix

Definition : 2.6. Let an n-dimensional rhotrix Rn =< aij, ckl >

be defined.Next, we define rank(Rn), which is the rhotrix R′
ns rank,

as follows:

rank(Rn) = rank(aij) + rank(ckl),
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2.2. RANK OF RHOTRIX

where (ckl) and (aij) stand for Rn’s major and minor matrices, re-

spectively.

Remember that the number of non-zero rows in a matrix’s row

reduced echelon form equals its rank.

Example : 2.3. Let

R5 =

〈
1

0 2 −2

1 −1 3 1 2

−2 1 1

1

〉

Next, A’s filled coupled matrix is provided by

m(A) =



1 0 −2 0 2

0 2 0 1 0

0 0 3 0 1

0 −1 0 1 0

1 0 −2 0 2


major B =


1 −2 2

0 3 1

1 −2 2

 and the mi-

nor matrix is

 2 1

−1 1


reduce echelon matrix of B
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2.2. RANK OF RHOTRIX

rref(B)


1 0 1

3

0 0 8
3

0 0 0


Note that there are exactly two non-zero rows in rref(B). Conse-

quently, rank(B) = 2. Given that C has a non-zero determinant,

rank(C) = 2. Consequently, rank(A) = 4 since by definition,

rank(A) = rank(B) + rank(C) = 2 + 2 = 4. By first trans-

forming the coupled matrix into the row-reduced echelon form

and then determining the ranks of the major and minor matri-

ces of the coupled matrix, respectively, we can also get the rank

of A. rref(m) =



1 0 0 0 8
3

0 1 0 0 0

0 0 1 0 1
3

0 0 0 1 0

0 0 0 0 0


E =


1 0 1

3

0 0 8
3

0 0 0

 D =

0 1

0 1



Note that rank(E) = 2 and rank(D) = 2. As rank(A) = rank(D)

+ rank(E) = 2 + 2 = 4[MBI12]

Numerous aspects of rank of matrix can be extended to the rank

of rhotrix, as can be seen from the definition of rank of a rhotrix.

Specifically, we possess the following:
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2.2. RANK OF RHOTRIX

Theorem : 2.2. Assume that Qn = < bij, dkl > and Rn = <

aij, ckl >.Let , represent any pair of n−dimensional rhotrices, with

n ∈ 2Z+ + 1.[San08]

Then,

1) rank(Rn) ≤ n;

2) rank(Rn +Qn) ≤ rank(Rn) + rank(Qn);

3) rank(Rn) + rank(Qn)− n ≤ rank(RnoQn);

4) rank(RnoQn) ≤ min{rank(Rn), rank(Qn)}

Proof. Assume that there are two n-dimensional rhotrices, Rn =<

aij, ckl > and Qn =< bij, dkl >, where n ∈ 2Z+ + 1.. Row-column

multiplication of rhotrices is the multiplication taken into consid-

eration for propositions (3) and (4). 1) According to the rhotrix’s

rank definition,

rank(Rn) = rank(aij) + rank(ckl).

Since (aij) is a matrix of order ( n+1
2 ) and (ckl) is a matrix of or-

der ( (n+1
2 ) - 1 ) by applying the corresponding properties of rank

of a matrix we get,

Therefore we get, rank(Rn +Qn) ≤ rank(Rn) + rank(Qn).

3) To prove the third statement, we apply corresponding inequali-

ties of matrices, that is,
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2.2. RANK OF RHOTRIX

rank(AB) ≥ rank(A) + rank(B)− n

where A is a m× n matrix and B is a n× p matrix. Now consider

rank(RnoQn) = rank[(aij)(bij)] + rank[(ckl)(dkl) ≥

[rank(aij)+ rank(bij)− n+1
2 ]+ [rank(ckl)+ rank(dkl)− (n+1

2 )+1] =

rank(Rn) + rank(Qn)− n.

4) For the last statement, consider

rank(RnoQn) = rank[(aij)(bij] + rank[(ckl)(dkl)]

≤ min(rank(aij), rank(bij)) +min(rank(ckl), rank(dkl))

≤ min(rank(aij) + rank(ckl + rank(dkl))

= min(rank(Rn), rank(Qn))[San08]
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Chapter 3

NATURAL RHOTRICES

3.1 Natural Rhotrices

This section examines a collection of rhotrices with entries that

are ordered natural numbers. The properties of this collection are

analyzed and the findings are presented. Numerous researchers

categorizes rhotrices into various types, including natural rhotrix

set, real rhotrix set, complex rhotrix set, rational rhotrix set, and

irrational rhotrix set.

Definition : 3.1. A rhotrix set with all of its entries being natu-

ral numbers is called a natural rhotrix set.

Definition : 3.2. If a rhotrix has an inverse, it is said to be in-

vertible.

Many rhotrix h(R) ̸= 0 are found to be invertible or non-singular
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3.1. NATURAL RHOTRICES

rhotrix. A natural rhotrix, on the other hand, is unique. In other

words, A−1 for which A is a natural rhotrix cannot be found.

Examples of Natural Rhotrix

Various representations of natural rhotrices are provided, based on

their dimensions.

a)The following is a natural rhotrix of dimension five (R5):

R5 =

〈
y

r s t

p q x m n

g k l

n

〉

where x, y, r, s, t, p, q, g, n,m, k, l ∈ N

b)In general, the following represents a natural rhotrix of dimen-

sion n (Rn):

where a, b, c, · · · , 2n2 + 2n+ 1 for all n′ ∈ 2R+ 1 and n ∈ N (n′ =

2n+ 1)
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3.1. NATURAL RHOTRICES

Lemma : 3.3. Let Ri be any natural rhotrix with dimension i.

In this case, and the heart h(Ri) is the middle value of the set of

numbers that make the rhotrix n = |Ri|, i = 1, 3, 5, · · · [Ise16]

Proof. Since n ∈ 2N + 1, then there exist middle value. so, if

n = |Ri|, 1, 3, 5, · · · then for i = 1 is trivial. Then, i = 3 ⇒ n = 5

entries which are ordered natural numbers. Thus, the median is

3 = 1
2(R2k+1 + 1). So, i = 5 ⇒ n = 13 entries which are ordered

natural numbers. Thus, the median is 7 = 1
2(|R5|+1) So,i = 2k+1

⇒ n = 2k2+2k+1 entries which are ordered natural numbers[Ise16]

Thus, the median is n2 + n+ 1 = 1
2 (R2k+2 + 1).

The converse follows from the cardinality of Rn where n ∈ 2N+ 1.

Theorem : 3.1. Let Rn be any n−dimensional natural rhotrix.

Then the following are equivalent:

a) The cardinality |Rn|= 1
2(n

2 + 1); n ∈ 2N+ 1

b) The last entry will be the value 2n ′2 + 2n ′1 for all n ∈ N.

c) The heart of (h(Rn)) is represented by

h = 1
2(|Rn|+ 1), n ∈ 2N+ 1

d) h(Rn) will be the value n ′2 + 2n ′1 + 1.[Ise16]

Proof. a) ⇒ b) since |Rn| = 1
2(n

2 + 1) where n ∈ 2N + 1 , then

for all n ′ ∈ N, n = 2n ′ + 1.
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3.2. DETERMINANT AND CO DETERMINANT FUNCTION

Then |R(n ′ + 1)| = 2n ′2 + 2n ′ + 1)

b) ⇒ c)

Since the last entry is 2n ′2 + 2n ′+ 1 and is old then by lemma,

the middle value is

2n ′2+2n ′+1
2 + 1

2 =
1
2(|Rn|+ 1)∀n ∈ 2N+ 1

c) ⇒ d)

Given that h(Rn) =
1
2(|Rn|+1) ∀n ∈ 2N+1 and letting n = 2n ′+1

gives ,

h(Rn) = n ′2 + n ′ + 1

d) ⇒ a)

Since h(Rn) = n ′2 + n ′ + 1 and by lemma , h(Rn) = |Rn| + 1,

then |Rn| = 1
2(n

2 + 1)[Ise16]

3.2 Determinant And Co determinant Func-

tion

Lemma : 3.4. Let |A| be a determinant function of A, |AB| =

|A||B|, and let A and B be any natural rhotrices of dimension n.

Proof. Let |A| = h(A) and |B| = h(B) then |AB| = |h(A)h(B)|

= |A||B|.
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3.2. DETERMINANT AND CO DETERMINANT FUNCTION

There are parallels between the idea of minor matrices and the

co-determinant function. However, the co-determinant function

could not always be the same in natural rhotrices of dimension 3

(R3). A higher natural rhotrix must first be reduced to a chain

of R3 known as the minor rhotrices in order to determine its co-

determinant function. Next, as was previously indicated, the de-

terminant function of every minor rhotrix is assessed. The deter-

minant functions are summed up in accordance with the division

or reduction of these minor rhotrices along the major column or

major row. Whether a natural rhotrix is summed up along the

major row or the major column, the outcome stays the same for

well-ordered entries.

Example : 3.1. Determine the natural rhotrices determinant and

co-determinant below

R5 =

〈
1

2 3 4

5 6 7 8 9

10 11 12

13

〉

solution:

h(A) = 7
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3.3. INDEX OF RHOTRICES

We then determine the co-determinant function. The first step

along the major column :

Codet(A) =

〈 1

2 3 4

7

〉
+

〈 7

10 11 12

13

〉
= 3 + 11 = 14

Now along minor row

Codet(A) =

〈 4

5 6 7

10

〉
+

〈 4

7 8 9

12

〉
= 6 + 8 = 14

3.3 Index of Rhotrices

The index of natural rhotrix A is the number of minor rhotrices

of dimension three that can be derived, along the major row, from

A. This index is a whole number or better still a natural number.

For example the index of R3 is 1 and of R5, R7 and R9 are 2,3

and 4, respectively. Appropriately, the index of R1 is zero.[7]n[Ami10]

Theorem : 3.2. Given any rhotrix R the Codet(R) = ρh(R),

where ρ where ρ is the index of R a natural number[Ami10]

Proof. Using mathematical induction, we prove the theorem. Given

that n ≥ 3, n ∈ 2N +1, and Rn are the natural numbers from which

the number of R3 that can be calculated is represented by the in-
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3.3. INDEX OF RHOTRICES

dex of a natural rhotrix. Codet(R3) = h(R3) is the result for n

= 3, as the codet(R3) is always the det(R3) = h(R3). For n = 3,

the lemma holds. Two minors of R3 exist for n = 5. Now, when

n = 3, then, codet(R3) = h(R3) since the codet(R3) is necessar-

ily the det(R3) = h(R3). By Lemma Implies that ρ = 1, So, the

equation is true for n = 3. For n = 5, then we have two minors of

R3. That is, codet(R5) = 2h(R5) implies that ρ = 2. So, the equa-

tion is true for n = 5. For n = 7, Next, we have three minors of

R3, then codet(R7) = 3h(R7) Thus, when n = 7, the equation is

valid.and ρ = 3.Then, for n = 2k + 1, Then, it is true for n = 2k

+ 1 and ρ = k. For n = 2k + 3, codet(R2k+3) = codet(R2(k+1)+1)

= k + 1h(R2(k+1)+1) Then, it is true for n = 2k + 3 and ρ = k +

1. Hence, the equation is true for all value of n ≥ 3 and ρ a natu-

ral number.[Ami10]

Theorem : 3.3. Theorem Giving any natural rhotrix R codet(R)

= ρ
2(|R| + 1) where ρ is the index and |R| is the cardinality of R,

and |Rn| = 1
2(n

2 + 1)[Ami10]

Proof. Since codet(R) = ρh(R) and by Lemma , determinant func-

tion is h(R). Then, the result follows from the theorem 3.[Ami10]
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Chapter 4

CONCLUSION

Introduced as an extension of matrix theory, rhotrix theory is study

related to linear algebra. We are still in the early stages of devel-

oping the theory of rhotrices. Next, we defined a few of the pri-

mary functions of Rhotrix. From there, we could conclude that

because most rhotrix operations are similar to matrix operations

and also we discovered that the set of all rhotrices forms a group

structure under heart-oriented multiplication. Studying the rank

of a rhotrix was made easier by converting it to a unique matrix

known as a coupled matrix.

The last chapter we discussed the characteristics of the natural

rhotrix set and introduced the ideas of co-determinant function,

index of natural rhotrices. Ultimately, our effort led us to the con-

clusion that thinking theory and matrix theory are closely related.
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The link between the coupled matrix and rhotrix allows for the

application of several matrix theory principles to this rhotrix the-

ory.Research on rhotrices will continue and yield further contri-

butions to the fields of mathematics, science, and technology as a

whole.
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