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ABSTRACT

Dynamic mathematical modeling in biology offers a transformative

approach to understanding the intricate dynamics of living systems. By

translating biological processes into mathematical equations, this field

enables the simulation and analysis of complex behaviors over time.

From cellular signaling pathways to ecological interactions, dynamic

models provide insights that deepen our comprehension of biological

phenomena. Through this project, we embark on a journey to explore

the principles, methodologies, and applications of dynamic mathemat-

ical modeling in biology, uncovering its role in advancing scientific un-

derstanding and addressing real-world challenges.

MEERA JOSEPH

M.Sc.Mathematics

Reg.No: 220011015803
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Chapter 1

INTRODUCTION

Mathematical modelling is becoming an increasingly valuable tool for

biology. More so is Dynamic mathematical modelling. Dynamic math-

ematical modeling in biology explores complex systems, using equa-

tions to simulate and understand biological processes like growth and

interactions. Such models capture the dynamics of populations, ecosys-

tems, and cellular processes, contributing to breakthroughs in fields

like medicine and ecology. A Dynamic mathematical model accounts

for time-dependent changes in the state of the system.

In this study we aim for learning the methods to develop a model based

on ODE and also to analyse it.

Before diving into how to create a model it will be essential to skim

through some basic concept in molecular biology as we will be study-

ing mathematical modelling in molecular biology as well. We will also

be studying mathematical modelling in macro biology which does not

require the prerequisite of studying the molecular biology.

The rest of the sections in this chapter contains some essential con-

cepts we need to know for creating a mathematical model.

1.1 Some Basic Concepts

Before we begin, we should know that every model that we create will

only be a simplification of the real phenomenon; Thus it might not an-
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swer all the problems related to that event.

The first step in creating a model is to collecting information; this is

mainly through existing literature, old models etc.,

The second step we need to make is to simplify the model using as-

sumptions.

The third step is to create a graphical model; which will serve as a

visual representation of complex processes.

The final step is to create the model and analyze it.

This study is restricted to creating models using ODEs. So, in regards

to ODE, we will always have to make some key assumptions such as,

• The system is homogenous (well mixed)

• Size of the system is large

We will have to make the first assumption since we are employing ODEs,

our only independent variable will be time and not space; thus our sys-

tem must be identical through out so that the system will not change

depending on space.

We make the second assumption so that the dependent variable changes

continuously.(So that Calculus may be applied.)

1.1.1 Law of Mass Action & Rate Constants

We will be creating models based on Law of Mass Action: the rate of a

chemical reaction is proportional to the product of the concentration

of the reactants.

The Law of mass action has an intuitive basis: it states that the prob-

ability of of a reaction occurring is proportional to the probability of

the reactants colliding with one another.

Reaction Rate of reaction
X−→ P k1[X]

A+B−→ C k2[A][B]
D+D−→ E k3[D]2

The exponent to which each reactant appears in the rate law is called
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the kinetic order of the reactant in the reaction. For example, reactant

A has kinetic order 1 in the second reaction listed above, while D has

order 2 in the third reaction. If a reaction describes uptake from the

outside environment, it can be written with no explicit reactant

(e.g. −→A). The rate of such a reaction is constant. Because these

reactions satisfy a rate law with a reactant concentration raised to the

power zero(k[S]0 = k), they are called zero-order reactions.

If you have observed the rate of reactions, given in the table, you will

notice that there are constants like k1, k2 etc., they are nothing but the

constant of proportionality and is called rate constant of a reaction and

can be indicated in the reaction formula like this:

A + B
k2

C

The dimensions of the rate constant depend on the number of reac-

tants. The rate constant for a single-reactant reaction has dimension of

time−1.

If a reaction has two reactants, the rate constant has dimension of

concentration−1 · time−1.

For a zero-order reaction, the rate constant is equal to the reaction rate

which has dimension of concentration · time−1.

1.1.2 Transient & Steady-state

A system is said to be at steady state when it has achieved dynamic

equilibrium; i.e.,when the rates of change of various quantities are bal-

anced, resulting in a constant state of the system.

Thus, to find the concentration of substrates or product during steady

state, we may equate the ODE or the system of ODEs to zero to obtain

the value or ratio.

Note that in steady state there is a non-zero flux through the network.
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Transient is the state of the system before it achieves steady state.

So we could say that the transient state occurs while the concentration

relaxes to its steady state value.

1.1.3 Analytic method Vs. Numerical simulation

Analytic method is the method in which we find solutions to an ODE

analytically(i.e, with paper and pen),whereas Numerical simulations

produce approximate values of the solution at a specified collection of

time-points using computational method.

Numerical simulation of differential equation models are not as useful as

analytic solution formulas, for two reasons. Firstly, an analytic formula

is valid for all initial conditions. In contrast, each numerical must be

generated from a particular initial condition. Secondly, the dependence

on the model parameters can be easily discovered from an analytic

solution formula; but no such insights are granted by the numerical

simulation, in which the parameter values are fixed.

Nevertheless, we use numerical simulation in most of the models since

finding solution analytically to complex ODEs are quite hard.

1.1.4 Basic Principle of Numerical Simulation

We normally use computational software to simulate ODE models. In

this section we will learn about the algorithms used by those computa-

tional soft-wares to generate simulations.

The simplest form of such an algorithm is Euler’s method. which is
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based on the following approximation:

Given a differential equation of the form

d

dt
a(t) = f(a(t))

the derivative
d

dt
a(t) can be approximated by a difference quotient:

d

dt
a(t) ≈ a(t+ h)− a(t)

h
, for h small.

Substituting this approximation into the differential equation gives

a(t+ h)− a(t)

h
≈ f(a(t)).

Treating this as an equality yields an update formula that can be used

to determine the approximate value of a(t+ h) given the value of a(t):

a(t+ h) = a(t) + hf(a(t)). (1.1)

Euler’s Method consists of applying this update formula repeatedly.

To implement Euler’s method, we choose a step-size h. This yields

a mesh of time-points t = 0, h, 2h, 3h, ..., nh, for some fixed number of

steps n. Given the initial value of a(0), we then use formula (1.1) to

approximate values at the other points on the grid:

a(0) = a(0) (given)

a(h) = a(0) + hf(a(0))

a(2h) = a(h) + hf(a(h))

a(3h) = a(2h) + hf(a(2h))

.

.

.

a(nh) = a((n− 1)h) + hf(a(n− 1)h)

Because the computer can carry out these repeated calculations rapidly,

the step-size h is often chosen so small that the set of points generated
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by this algorithm appears as a continuous curve.

Figure 1.1: Numerical simulation of the model d
dta(t) = −a(t). The initial condition is a(0)=1.

Figure 1.1 shows simulations generated for two different step sizes. The

simulation is more accurate/closer to the true solution when the step

size h is chosen to be smaller.

Computational software packages that implement numerical simulation

make use of algorithms that improve on Euler’s Method. Some exam-

ples of such soft-wares are MATLAB, XPPAUT, JSIM etc,.

1.1.5 Simulating a model using Matlab

In order to simulate a model using Matlab, first, we have to enter the

code in the editor tab and save it with a suitable name, say, Model1.m

(MATLAB files end with the file extension .m. They are referred to as

m-files). Then, to simulate the model, we need to enter the name in

the command line without the extension ‘.m’.

Given below is the code to simulate an enzymatic reaction model.

(given in section 2.2.1 of Chapter 2)
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This m-file makes use of the command ode45 to generate the simu-

lation. This is one of many simulation routines that are available in

MATLAB.

Note that lines in the code that begin with % are comments that are

ignored by the program. MATLAB is case-sensitive. The end of a

command is indicated with a semicolon.

1.2 Some Basic Concepts

for Modelling in Molecular biology

A large molecular network controlling a cellular process involves large

number of molecules and processes. So, it is often difficult to study

such large network as it is.

So, in order to model a molecular network we will have to break it down

into recurring small sub-networks with specific dynamics and functions
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called network motifs.

A network motif is made up of a few elementary processes like Ligand-

receptor interaction, Enzymatic reaction, Transcription and Translation

etc,.

There are many types of motifs. Some of the most common motifs are

Positive feedback motif, Negative feedback motif and Incoherent feed-

forward.

As you can observe in the figure given above, the positive feedback

motif is a process in which an entity A induces the production of B

which in-turn induces the production of C which in-turn induces the

production of A, resulting in the amplification of concentration of A.

Whereas in negative feedback motif, an entity X induces the produc-

tion of Y which in-turn induces the production of Z which inhibits the

production of X resulting in the depletion of concentration of X.

In Incoherent feed forward lets say P is a transcriptional factor which

induces the production of two other transcriptional factors Q and R in

which Q induces the production of S whereas R inhibits the production

of S, resulting in a controlled expression of S.

1.2.1 Quasi-Steady State Assumption(QSSA)

When constructing a dynamic model, one must decide which time-scale

to address. This choice is typically dictated by the time-scale of the rel-

evant reactions and processes.

Biological processes take place over a wide range of time-scales. Con-
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sider, for example, a genetic network that generates a circadian rhythm.

A model of this network will describe oscillatory behaviour with a pe-

riod of roughly 24 hours, and so will incorporate processes acting on

the time-scale of hours. However, the network is based on gene expres-

sion, which involves the binding of proteins to DNA; these chemical

processes happen on the scale of seconds. Moreover, the circadian os-

cillator is entrained to seasonal changes in the light-dark cycle-changes

that occur on the order of months. It would not be possible to resolve

all of these time-scales in a single model.

To model a system that involves processes acting on different time-

scales, a primary time-scale must be chosen. Other time-scales are

then treated as follows:

• processes occurring on slower time-scales are approximated as frozen

in time;

• processes occurring on faster time-scales are presumed to occur

instantaneously.

Thus we will have to reduce a model by separation of time-scales.

This model reduction process approximates the original model with a

model of reduced complexity.

We next present techniques for model reduction by separation of time-

scales.

Elimination of slow variables is straightforward-we simply assign a con-

stant value to each slow variable and treat it as fixed parameter. The

treatment of fast variables requires more care. There are mainly two

approaches that allow processes to be treated as instantaneous: The

Rapid Equilibrium Assumption and the Quasi-Steady State Assump-

tion.

The rapid equilibrium approximation is reached by treating individ-

ual reaction processes as instantaneous. Whereas the QSSA focuses on

individual species. Evermore, the rapid equilibrium assumption may

sometime produce error whereas the QSSA is guaranteed to be accu-

rate at steady state.
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We will be only considering the QSSA model reduction method.

Consider the network:

k0
A

k1
k−1

B
k2

So, our model will look like (will be explained how in Chapter 2):

d[A]

dt
= k0 − k1[A] + k−1[B]

d[B]

dt
= k1[A]− k−1[B]− k2[B]

suppose k1 + k−1 ≫ k2

we observe that all dynamic reactions involving species A occur on the

fast time-scale, so that, compared to the dynamics of B, species A comes

rapidly to its steady state concentration. Following this idea, we replace

our original differential equation-based description of the behaviour of

[A] (that is, d[A]
dt

= k0 − k1[A] + k−1[B] ) with an algebraic description in-

dicating that concentration [A] is in steady state with respect to the

other variables in the model.

For each time instant t, the quasi-steady state [A]qss satisfies:

0 = k0 + k−1[B]− k1[A]
qss

or equivalently

[A]qss =
k0 + k−1[B]

k1
(1.2)

Here,we are replacing the differential description of [A] with an alge-

braic description that says: [A] instantaneously reaches the steady state

it would attain if all other variables were constant.(Because it equili-

brates rapidly, the other variables are essentially constant from A’s

point of view.)

The reduced model, called the quasi-steady state approximation (QSSA),

follows by replacing [A] with [A]qss in the original model.
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To emphasize that the model reduction leads to an approximate model

that is different from the original, we introduce the notation [B̃] for the

concentrations in the reduced model, we get:

d[B̃]

dt
= k1[A]

qss − (k−1 + k2)[B̃]

= k1
k0 + k−1[B̃]

k1
− (k−1 + k2)[B̃]

= k0 + k−1[B̃]− (k−1 + k2)[B̃]

= k0 − k2[B̃]

Thus our reduced model will look like:

[A]qss =
k0 + k−1[B̃]

k1
d[B̃]

dt
= k0 − k2[B̃]

The quasi-steady state approximation is illustrated in Figure 1.2.

Figure 1.2: Parameter values are (in time−1) k0 = 5, k1 = 20, k−1 = 12, andk2 = 2 .The
approximation exhibits an error over the transient, but converges to the original model in steady
state. Initial conditions are a(0)=8, b(0)=4, and b̃(0)=235/32

A significant error occurs during the transient, but diminishes as the

steady state is approached.
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Chapter 2

HOW TO CREATE A MODEL

Let’s learn how to create some mathematical models in biology from

these examples

2.1 Modelling Macroscopic Processes

2.1.1 Modelling Spread of Infectious Disease

Here we are discussing a simple model on spread of infectious disease.

so in order to simplify it we make some assumptions

• The disease spreads only when an infected person comes in contact

with an uninfected one.

• Everybody should come in contact with everyone

• The Total population is very large

• The total population. remains constant over time(no death or

birth)

• No one gets cured

The second and third assumptions are made since we are creating an

ODE based model. We have seen in Chapter 1 that when creating ODE

based models we will need to assume that the system is Homogenous

and the size of the system is large.

The rest of the assumptions are made so as to simplify the model.

Now we need to create a simple representation of our model:

12



Infected+Normal
r

2 · Infected

let

x=fraction of the population that is infected

(1-x)=fraction of the population uninfected

r=rate constant for the spread of the infection

Then our model will look like:

dx

dt
= r(1− x)x (2.1)

This is because the rate of change of fraction of people getting in-

fected is directly proportional to the fraction of people infected as well

as the fraction of people uninfected.

Now using this model we will be able to answer some questions like

• Let at time=0, fraction of population infected be x0.What will be

the fraction of the infected population at time t?

• Create time vs x plot to show the dynamics of spread of infection.

In order to answer these questions we need to find the solution for (2.1)

(In this example we are using analytic method which is often not feasi-

ble for complex models)

So we need to integrate (2.1)

∫ x

x0

dx

x(1− x)
= r

∫ t

0

dt

=⇒
∫ x

x0

dx

x
+

∫ x

x0

dx

(1− x)
= r

∫ t

0

dt

=⇒ [lnx]xx0
− [ln(1− x)]xx0

= rt

13



=⇒ ln
x

x0

− ln
(1− x)

(1− x0)
= rt

=⇒ x(1− x0)

x0(1− x)
= ϵrt

=⇒ x =
1

1 + (
1

x0

− 1)ϵrt
(2.2)

Equation (2.2) gives the fraction of infected population at time t.Thus

this is the answer for the first question

In order to answer the second question, all we need to do is plot x i.e.,

equation (2.2) with respect to time.

The Graph will look like this:

Figure 2.1: Time vs x plot with initial parameter x0=0.02 and r=0.5

As we can see the behaviour of the function is not Linear but rather

Sigmoidal. It is also evident from the graph that the entire population

gets infected between 15 to 20 days given the initial parameters.
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2.1.2 Modelling Population Growth of Bacteria in a Petri dish

Now we are going to model a simple growth model. We assume that

there is no death of bacteria in the petri dish. Since the petri dish is

the environment we provide for the bacteria’s growth, we know that

it only provides limited resources. As a result, the bacteria will cease

growing after the resources are fully consumed. We call this maximum

capacity, the carrying capacity; we denote it as k. thus our Growth

model will look like this:

dx

dt
= r(1− x

k
)x (2.3)

Where

x=population at time t

r=rate constant for growth

k=carrying capacity

This is because the rate of change of population at time t is pro-

portional to the current population x, and the term(1− x
k
)tends to one

when x ≪ k and tends to zero when x ≈ k

Now lets try answering some questions based on this model.

• At time=0, the population is x0.What will be the population at

time t?

• Plot the population dynamics

To answer the first question all we need to do is to fin the solution

for (2.3) for this we need to integrate (2.3) within the limits x from x0

to x and t from 0 to t

15



dx

dt
= r(1− x

k
)x

=⇒ k
dx

dt
= r(k − x)x

=⇒ k

(k − x)x
dx = rdt

=⇒ dx

x
+

dx

k − x
= rdt

=⇒
∫ x

x0

dx

x
+

∫ x

x0

dx

k − x
= r

∫ t

0

dt

=⇒ [lnx]xx0
− [ln(k − x)]xx0

= r[t]t0

=⇒ ln(x)− ln(x0)− ln(k − x) + l(k − x0) = rt

=⇒ ln(
x(k − x0)

x0(k − x)
) = rt

=⇒ x(k − x0)

x0(k − x)
) = ert

=⇒ x =
k

1 + (
k

x0

− 1)e−rt

(2.4)

Thus, (2.4) gives the answer to the first question.

To answer the second question, we need to plot x with respect to time

t. So the Graph will look like this:

Figure 2.2: Time vs x plot with initial parameter x0=100, r=0.05 per min and k=10,000
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2.2 Modelling Molecular Process in Cell

In this section we will model some basic molecular processes.

As we have seen in Chapter 1, to model any complex biological pro-

cess(Circuit) we need to break it up into smaller units called motifs

which even further must be broken down into elementary processes. In

this Section, we will model a basic elementary process, and a motif.

2.2.1 Modelling Enzymatic Reaction

As we know, most of the biochemical processes involves enzyme. An

important thing to note is that while an enzyme helps to convert a

substrate to a product it does not get used up.

Let us now model this reaction:

S
E
k1

P

It is is easy to model this reaction using Law of mass action. And

thus it would look like this:

d[P ]

dt
= k1[E][S]

d[S]

dt
= −k1[E][S]

Where [E],[S],[P] denotes concentration of Enzyme, Substrate and Prod-

uct at time t respectively.

As we can see the rate of change of [P] increases by the forward re-

action thus it is proportional to [E]and[S]. Similarly the rate of change

of [S] decreases as the forward reaction keeps happening, thus it is the

negative of d[P ]
dt

.

17



We can easily figure out the concentration of P at time t either by

using Analytic method or Numerical Simulation.

We have thus modelled the simplest Scheme of the enzymatic reac-

tion. But this model may sometimes produce errors as it avoids the

mechanics of the reaction. We are now going to model the detailed

scheme(which contains the mechanics) of the enzymatic reaction.

Detailed scheme:

S + E S-E P-E P + E

To simplify the model we are making some assumption:

• The inter-conversion between substrate-enzyme(S-E) and product-

enzyme(P-E) complexes is very fast (compared to the timescale

of the association and disassociation events). Consider them as a

single entity, C.

• the product formed does not bind to the enzyme.(this assumption

is motivated by the fact that laboratory measurements of reaction

rates are typically carried out in the absence of product.)

So, our simplified model will look like this:

S + E
k1
k2

C
k3 P + E

Now let us model this reaction:

d[S]

dt
= −k1[E][S] + k2[C]

d[E]

dt
= −k1[S][E] + k2[C] + k3[C]

d[C]

dt
= k1[E][S]− k2[C]− k3[C]

d[P ]

dt
= k3[C]

Since this model is a system of differential equations, it will be quite

hard to compute the concentration of [P] at any given time t.
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Thus we need to further simplify it to one or two ODEs using some

simple algebraic equations and assumptions.

We know that the enzyme does not get used up. Thus by conserva-

tion of enzyme, we get:

[E]T = [E] + [C]

Where [E]T remains a constant.

Assumptions to simplify:

• [S] ≫ [E]

• The complex, C, remains Quasi-steady state.

Since C is in quasi-steady state,

d[C]

dt
= 0

=⇒ k1[E][S]− k2[C]− k3[C] = 0

=⇒ k1[E][S]− (k2 + k3)[C] = 0

=⇒ k1([E]T − [C])[S]− (k2 + k3)[C] = 0

=⇒ k1([E]T − [C])[S] = (k2 + k3)[C]

=⇒ ([E]T − [C])[S] =
(k2 + k3)

k1
[C]

=⇒ [E]T [S] =
(k2 + k3)

k1
[C] + [C][S]

=⇒ [C] =
[E]T [S]

(k2 + k3)

k1
+ [S]

Now we can substitute the equation for [C] in
d[P ]

dt
Thus,

d[P ]

dt
= k3[C]

= k3 ·
[E]T [S]

(k2 + k3)

k1
+ [S]

=
k3[E]T [S]

KM + [S]

19



This reduced model describes S −→ P as a single (non-elementary) re-

action. The reaction rate is called a Michaelis-Menten rate law.

Where KM =
(k2 + k3)

k1
is the Michaelis-Menten Constant.

Similarly by simplifying
d[S]

dt
using enzyme conservation equation and

concentration of C, we get:

d[S]

dt
= −k3 ·

[E]T [S]

KM + [S]

Thus we have simplified our model to just two ODEs;

d[S]

dt
=

−k3[E]T [S]

KM + [S]

d[P ]

dt
=

k3[E]T [S]

KM + [S]

Now by using numerical simulation or Analytic method we can easily

figure out the concentration [P] at any time t.

Figure 2.3: Numerical simulation of the given model with initial concentration S(0)=1000M,
and [E]T = 3M,k3 = 0.2persec,KM = 300M
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2.2.2 Modelling Positive Feedback Motif

In this section we will be modelling the given positive feedback motif:

In this motif, an external signal S activates X which in fact is an

enzyme kinase, which phosphorylates Y to become Y p. As usual, the

phosphorylation is a reversible reaction, thus in this case, an enzyme,

a phosphatase E, de-phosphorylates Y p to create Y . Y p on the other

hand, activates X, which further induces the production of Y p and thus

forming a positive feedback loop.

It is to be noted that, in this particuar motif, the enzymatic reaction

follows Michaelis-Menten Kinetics.

To model this reaction we essentially need to find the dynamics of X

and Y p.

We could model them in this way,

d[X]

dt
= ksS + ky[Y p]− kd[X]

d[Y p]

dt
=

k1[X][Y ]

Km1 + [Y ]
− k2[E][Y p]

Km2 + [Y p]
− ky[Y p]

This is an incomplete model since d[Y p]
dt

depends upon [Y] whose ODE

we have not formulated. But including the ODE of [Y] will further

complicate the model. So in order to simplify the model, we will use a

conservation equation:

[Y ]T = [Y ] + [Y p]
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Now we could substitute for [Y ], and thus we will obtain:

d[X]

dt
= ksS + ky[Y p]− kd[X]

d[Y p]

dt
=

k1[X]([Y ]T − [Y p])

Km1 + ([Y ]T − [Y p])
− k2[E][Y p]

Km2 + [Y p]
− ky[Y p]

Which gives us the model for this positive feedback motif.

2.3 Online Resources for Mathematical modelling

in Biology

In order to create a model, collecting data is the first step.

We would certainly need Pathway/Molecular information if we are mod-

eling in molecular biology. One of the basic ways to get such information

is through existing literature. Some best places to search for them will

be:

• PubMed : Repository of Abstracts of Publications over ages

• Google Scholar

Another way to collect information regarding the pathways is through

Databases; The information in these Databases are manually collected

and distilled from the existing literature. Some Databases are:

• KEGG : http://www.genome.jp/kegg/pathway.html

• Reactome

• Panther

• WikiPathways

A best place to get information to create models is by learning from old

models.One could even recycle an old model by making some tweaks in

an existing model.
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Some important repositories and databases from which we could get

old models are:

• BioModels Database: http://www.ebi.ac.uk/biomodels.main/

• CellML Model Repository: http:// models.cellml.org/cellml

• JSimModel Archives: http://www.physiome.org/jsim/models/index.html

An Important information to collect while modelling is the numerical

values of Parameters involved(The constants involved in the ODEs).

We could get such information through existing literature, old models

through databases and even by performing experiment and by doing

parameter estimation by fitting. To do this we need to first collect

the experimental data. Then we will have to create a model and try

different parameter values and simulate the model. The parameter set

for which the simulated data is closer to the experimental data will be

the best fit. Parameter Estimation will not give us the exact value but

rather a satisfactory value.

Some of the many tools which helps one to estimate parameter values

are JSim, COPASI, and D2D

Here are some important databases to collect parameter values:

• BioNumbers

• SABIO-RK

• BRENDA
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Chapter 3

HOW TO ANALYZE A MODEL

3.1 Steady State Analysis for a single ODE

As we know, to find the steady state of a single ODE, all we need to

do is, to equate the rate to zero, and so we could get the values of the

dependant variable at which the system is at steady state.

That is,

for the ODE,dx
dt

= f(x, t)

x is at steady state, when dx
dt

= 0

that is when f(x, t) = 0

we will only need to solve this equation to fin d the steady state values.

3.1.1 Direction Field

Direction fields are very useful in analysing staedy staes in a single ODE

based model.

In order to create a Direction field of an ODE dx
dt

all we need to do is:

• Draw an X-T space.

• Divide X-T space in a grid to obtain equidistant points.

• At each grid point draw an arrow with slope= dx/dt

• Do it over the entire space.

Here we can see that at the steady states of the model (i.e., when dx
dt

= 0)

the arrows are at angle of 0o with the horizontal axis, thus implying that
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Figure 3.1: Direction field of the model dx
dt = x(1− x)

x=1 and x=0 are the steady states of the system.

3.1.2 Stability of steady state

Stability of a steady state is define by the time evolution of the depen-

dant variable around the steady state. That is if x(dependant variable)

is pertrubed from its steady stae value xss,with time, whether it would

return to xss or move away from xss.

3.1.3 Checking stability by analysis of Direction field

One of the best ways to check the stability of steady state is by analyzing

the direction field.

Lets consider the direction field of dx
dt

= x(1− x) given in Figure 3.1.

There are two steady state for this model; they are x=1 and x=0

let us first consider the steady state x=1. If we perturb x to 1.1, we

can see that over time it will collapse into x=1. If we perturb x to

0.7, it will also move toward x=1 over time. Thus, no matter in which

direction the value of x is perturbed it will collapse into the steady state

x=1.

Such a steady state is known as Stable steady state.

Now lets consider the steady state x=0.

25



if we perturb x to either x<0 or x>0, we can observe that it would move

away from x=0 over time. Such a steady state is known as Unstable

steady state.

3.1.4 Types of Steady states in a single ODE based model

There are mainly 3 types of steady states in a single ODE based model.

They are:

• Stable steady state

• Unstable steady state

• Semi-stable steady state

we have discussed earlier the characteristics of Stable and Unstable

steady states. Now let see how a Semi-stable steady state behaves.

Figure 3.2: Direction field of dx
dt = (x+ 1)2

Here, we can observe that x=-1 is the steady state of the system and

if x is perturbed in a positive direction, it moves away from the steady

state whereas if it is perturbed in the opposite direction, it will collapse

into the steady state. If a steady state shows this type of behaviour it

is called Semi-stable steady state.
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3.2 Steady state analysis for a system of ODEs

3.2.1 How to find steady state analytically

Lets consider this system of ODEs:

dx

dt
= k1x− kx2y

dy

dt
= k2xy − k3y

At steady state, both dx
dt

= 0 and dy
dt

= 0

=⇒ k1x− k2xy = 0 (3.1)

k2xy − k3y = 0 (3.2)

from equation (3.1),

x(k1 − k2y) = 0

=⇒ x = 0 or y =
k1
k2

Now consider equation (3.2),

When:x = 0

k2 · 0 · y − k3 · y = 0

=⇒ y = 0

When:y =
k1
k2

k2 · x · k1
k2

− k3 ·
k1
k2

= 0

=⇒ xk1 − k3
k1
k2

= 0

=⇒ x =
k3
k2

∴ The system has two steady states:

x = 0, y = 0

x =
k3
k2

, y =
k1
k2
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3.2.2 How to find steady state graphically

lets consider the same system of ODEs:

dx

dt
= k1x− k2xy

dy

dt
= k2xy − k3y

let k1 = k2 = k3 = 1

then
dx

dt
= x− xy

dy

dt
= xy − y

at steady state:
dx

dt
= 0

=⇒ x− xy = 0

=⇒ x(1− y) = 0

=⇒ x = 0 or y = 1

By equating dx
dt

to 0 we have obtained two lines; When they are drawn

in a phase plane(the graph which we are about to draw), these lines are

called x nullclines

similarly at steady state:
dy

dt
= 0

=⇒ xy − y = 0

=⇒ y(x− 1) = 0

=⇒ y = 0 or x = 1

Just like before, there lines are called y nullclines

The intersection of x and y nullclines gives us the steady states of

the system. As we can see in the figure given above, intersection of

the x and y nullclines gives us the points (0,0) and (1,1) which are the

steady states of the given system of ODEs.
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Figure 3.3: Phase plane and Phase plot of the given system.(The dashed lines represent the
x-nullclines the black line represents the y-nullclines)

Here we have drawn a graph with two axes representing the two de-

pendent variables. This type of graph is known as a Phase Plane.

3.2.3 Phase Plane and Phase Portrait

Just like we used a direction field to represent the dynamics of an ODE,

for a system of ODEs, we use Phase Plane.

A Phase plane is nothing but a graph with two axe representing the

two dependant variables.

Whereas a Phase Portrait is a geometric representation of the trajec-

tories in the phase plane. It displays the time evolution of the two

dependant variables in phase plane.

Given below are the steps to draw a phase portrait of a system of

ODEs with two dependant variables x and y:

• Draw an Y-X space.

• Divide Y-X space in a grid to obtain equidistant points.

• At each grid point draw a small line (leaving provision to draw an
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arrow head later) with slope = dy/dx (where dy/dx=dy
dt
/dx
dt
)

• Do it over the entire space.

• Draw the arrow head over each line by following the steps below

– when dy
dt
>0 and dx

dt
>0 draw:

– when dy
dt
>0 and dx

dt
<0 draw:

– when dy
dt
<0 and dx

dt
<0 draw:

– when dy
dt
<0 and dx

dt
>0 draw:

And thus, we will obtain a phase portrait.

Figure 3.4: Phase Portrait of the system:dxdt = x− xy and dy
dt = xy − y

3.2.4 Types of Phase portrait of different steady states

There are different types of steady states let us try to under stand them

by their phase portraits in the given figures:
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Sink node or Stable node

Source node or unstable node

Saddle point
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Center type

Stable Spiral or Spiral sink

Unstable spiral or Spiral source
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We can observe that these phase portraits contain only one steady

state. This is because the system of ODEs were linear, whereas the

model we discussed before is non-linear and thus contains more than

one steady state (0,0) and (1,1). By observing the phase portrait of

that model given in figure(3.4), we can say that (1,1) is a center type

steady state, whereas (0,0) is a saddle point.

3.3 Bifurcation

Bifurcation is defined as the change in qualitative behaviour of the

system due to change in parameter values.

By qualitative behavior, we mean:

• number of steady states

• stability of staedy states.

Change in either of these two or both, will change the phase portrait.

Therefore, bifurcation in a sense is change in phase portrait of the

system with change in parameter.

Consider the ODE:
dx

dt
= m− x2

At steady state,
dx

dt
= m− x2 = 0

=⇒ x2 = m

=⇒ x = ±
√
m

When m>0,

x has two steady states, x = +
√
m and x = −

√
m

When m=0

x has a single steady state,

x=0

33



When m<0,

x has no real steady states.

By plotting the steady state values along m we get the Bifurcation

diagram:

If we observe the phase portrait of this model with different m values

we can see the type of steady state that is formed with the change of

parameter.
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Bifurcation has great application in the field of Developmental biol-

ogy and many other fields.

A great example is the Waddington’s landscape which explains the em-

bryonic development-in which a group of similar cell type differentiates

into multiple cell types(cellular heterogeneity) due to bi-stable or multi-

stable networks.(This multi-stability is caused by bifurcation)

Figure 3.5: Waddington’s landscape

(a) Direction field of the model at A=0.1 (b) Direction field of the model at A=0.5

Figure 3.6: A model of a protein P that exhibit uni-stability and bi-stability as the signal A(the
parameter) changes
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Chapter 4

CONCLUSION

In this study, we were able to learn some of the basic tools and concepts

required to create a dynamic mathematical model in biology using ODE.

This study might help mathematics students aspiring to do a project

in mathematical biology.

Looking ahead, dynamical mathematical modeling holds immense

promise for addressing pressing biological questions and addressing real-

world challenges, such as disease dynamics, ecological sustainability,

and biotechnological advancements. By leveraging the power of com-

putational tools and mathematical abstraction, we can navigate the

complexities of biological systems with greater precision and insight,

ultimately paving the way for transformative discoveries and applica-

tions in the field of biology.

Furthermore, the interdisciplinary nature of mathematical biology

encourages collaboration between mathematicians, biologists, and other

scientists, leading to innovative approaches and breakthrough discov-

eries. As such, this study not only benefits mathematics students but

also facilitates interdisciplinary interactions and promotes a deeper un-

derstanding of the interconnectedness of different scientific disciplines.
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