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CHAPTER 0

INTRODUCTION

Operations research (OR) is a methodical approach to problem-solving and decision-

making in organizational management.

The process of operations research can be roughly divided into the following stages.

e Recognizing an issue that requires a solution.

e Building a model of the issue that takes factors and the real world into account.
e Solving the problem by applying the model.

e Analyzing the performance of each solution after testing it on the model.

e Putting the actual problem's answer into practice.

Characteristics commonly found in operations research include optimization, simulation, and
the application of probability and statistics. Optimization aims to enhance performance within
given constraints, often by narrowing down choices. Simulation entails creating models to test
solutions before implementation. Probability and statistics are utilized to analyze data, identify

risks, generate forecasts, and evaluate potential solutions.

Compared to standard software and data analytics tools, the field of operations research offers
a more potent method for making decisions. Companies that hire operations research specialists
can obtain more comprehensive datasets, take into account all of their alternatives, forecast all
potential outcomes, and assess risk. Furthermore, in order to identify the best suitable strategies
for resolving a given problem, operations research can be customized to certain business

Processes or use cases.

Applications of Operations Research

There are numerous application cases for operations research, such as:
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Analyzing risks:

An operation research tool called risk analysis enables companies to identify and address any
issues before they become obstacles to their goals or projects. Additionally, risk analysis can

be used for non-business endeavors like event planning and property ownership.

Inventory evaluation:

Inventory is an asset on a balance sheet that represents the products a business plans to sell to
clients in the future. It includes work-in-progress items and raw materials needed to make such
goods in addition to the final products. Thus, inventory analysis helps companies decide how
much stock to keep on hand to satisfy consumer demand and keep expenses associated with

inventory storage to a minimum.

Methodical organizing:

Through the application of operations research, strategic planning enables leaders of
organizations to clarify their future vision and pinpoint their aims and objectives. The
procedure entails figuring out which goals should be completed first in order for the
organization to realize its declared vision. Strategic planning is frequently used to represent

long-term objectives that have a three- to five-year lifespan, however this can be extended.

Market analysis:

Businesses employ marketing research as a method or set of procedures to gather data that
helps them better understand their target market. Businesses use this data to improve their user
experience, make better products, and give customers better products. Typically, marketing
research is done to learn what consumers want and how they respond to certain products or

services

Logistics:
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The management of the movement of goods between the point of origin and the point of
consumption to satistfy the needs of businesses and consumers is known as logistics in the
business world. Physical resources such as food, drink, materials, equipment, and animals can

all be managed in logistics. It can also contain abstract objects like time and data.

Management of revenue:

Using a methodical analytics approach, revenue management forecasts micro-level customer
behavior in order to maximize product availability and price while boosting revenue growth.
Said another way, the main objective is to provide the appropriate product to the appropriate

customer at the appropriate cost at the appropriate moment.

Analysis of sales:

The technique of analyzing sales data to find patterns and trends is known as sales analysis.
Businesses can use sales data to help them make informed decisions about their products,
prices, promotions, consumer requests, inventory, and other organizational aspects. Sales

analysis in certain organizations is as simple as regularly reviewing the sales figures.

Making Plans:

A component of operations research called scheduling helps to plan, coordinate, and optimize
tasks and workloads in a manufacturing or production process. It is employed in the planning
of production procedures, material acquisitions, plant and machinery resources, and human

resources.

Putting up an auction:

An auction is set up in order to sell properties and assets to potential buyers. An auction is a
public method of buying and selling where customers are invited to submit bids for particular

items that are owned by companies and owners.
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Predicting:

It's a tactic that makes informed forecasts regarding the future course of trends by utilizing
historical data as inputs. Businesses use forecasting to understand how to distribute funds or

make plans for future expenditures.

Chain of supply:

Supply chain management is the management of the entire process of turning raw resources
into a final product. It comprises establishing a centralized management mechanism to link a
network of suppliers. Every supplier functions as a connection between producers and sellers

in the manufacturing cycle.
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CHAPTER 1

MATHEMATICAL PRELIMINARIES

Slack variable

Introduced in linear programming to convert constraints into an equality constraint. It
represents the amount by which the LHS of constraints can be exceeded without violating the

constraint.

Iteration:

Iteration is a process that repeats its step until a specific condition is met.

Initial feasible solution:

Satistying the constraint of the problem is called the initial feasible solution.

Graph

A graph can be denoted as G(V,U) where V is the set of elements Vi; j=12,..,n which
represents points and U is the set of pairs (v, vy); where v, vy are elements of V which

represents the arcs joining the points of V.

V- vertices U- arcs

Directed arc

If (v}, vy) are ordered pairs, then we call it as directed arc.

Directed graph

A graph which contains directed arc is called directed graphs.
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Finite Graph

If U and V are finite set, then graph G (U, V) is finite graph.

Initial and terminal vertex

The arc incident from or going from is called initial vertex and the arc incident to or going to

1s called terminal vertex

Subgraph

A subgraph of G(U, V) is defined as a graph G, (V;, U;)with V1 subset of V and U1 containing

all those arcs of G which connects the vertices of G1.

Partial graph

A partial graph of G(U, V) is a graph G, (V, U, ) which contains all the vertices of G and some

of its arcs.

QW)

0N(Vy) is the set of arcs of G (V, U) incident with a subset Vj of V.

Chain

A sequence of arcs {uy,uy, ..., Uy, Ug41, -, Ug} Of a graph such that every intermediate

arc u; has one vertex common with the arc u;_; and another common with w1
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Path

A path is a chain in which all the arcs are directed in the same sense such that the terminal

vertex of the preceding arc is the initial vertex of the succeeding arc

Cycle

A cycle is a chain in which no arc is used twice and the first arc has a vertex common with the

last arc

Circuit

In a cycle, if all the arc arcs are directed in the same sense then, it is called a circuit.

Connected graphs

If for every pair of vertices there exist a chain that connecting the two then that graph is said to

be connected.
Strongly connected graphs

If there is a path connecting every pair of vertices then the graph is said to be strongly

connected.

Tree

A tree is defined as a connected graph with at least 2 vertices and no cycles.

Centre of a graph
A vertex which is connected to every other vertex of a graph is called centre of a graph

A tree with a centre is called arborescence
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CHAPTER 2
LINEAR PROGRAMMING

A technique for optimizing operations under certain limitations in mathematics is called
linear programming. Maximizing or minimizing the numerical value is the primary goal of
linear programming. It is composed of linear functions that are bound by formulas that are
either linear equations or inequality. When determining the best way to use resources, linear
programming is thought to be a crucial strategy. The two terms "linear" and "programming"
make up the phrase "linear programming." A degree one link between several variables is said
to be "linear." The process of identifying the optimal answer from a range of options is referred

to as "programming."

Mathematicians and professionals in the commercial, economic, manufacturing, and
telecommunications domains frequently utilize linear programming. Let's talk about what
linear programming is, how it works, and many approaches to solving linear programming

issues in this article.
2.1 Formulation of linear programming problems

Decision Variables: These represent the quantities a decision maker can control or decide upon.
In an LP problem, decision variables are typically the unknown quantities we want to determine
in order to optimize some objective. For example, in a production planning problem, decision

variables might represent the quantities of different products to produce.

Structural Constraints: These are limitations or conditions that restrict the possible values for
the decision variables. They define the feasible region within which the optimal solution must
lie. These constraints are typically linear equations or inequalities derived from the problem's

structure and requirements.

Non-negativity Constraints: In many optimization problems, including linear programming,
decision variables cannot take negative values. This constraint is imposed to reflect the real-
world meaning of the decision variables. For instance, quantities produced, purchased, or
allocated cannot be negative. Non-negativity constraints are usually expressed as inequalities,

where decision variables are greater than or equal to zero.
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Single Objective Function: This is the function that we want to optimize (either maximize or
minimize) based on the values of the decision variables. In linear programming, there's only

one objective function.

Optimal solution: refers to the best possible outcome given certain constraints and an objective
function. It's found at the vertex of the feasible region that maximizes or minimizes the
objective function. This solution is determined using mathematical techniques like the simplex

method or interior-point methods.

Feasible solution: This is a solution that satisfies all the constraints of the problem. It means
that all the variables are within their defined ranges, and all the constraints are met
simultaneously. However, a feasible solution may not necessarily be the best or most optimal

solution; it just needs to adhere to the problem's constraints.

These elements together form the basis for constructing and solving linear programming

problems, allowing decision makers to optimize their objectives subject to various constraints.

Let's illustrate this with an example:

A company manufactures two types of products A and B. Each product uses milling and
drilling machine. the process time per unit of A on the milling is 10 hours and on the drilling
machine is 8 hours. The processing time per unit of B on the milling is 15 hours and on the
drilling machine is 10 hours. the maximum number of hours available per week on the milling
and the drilling machine are 80 hours and 60 hours respectively. Also the profit per unit of

selling A and B are Rs.25 and Rs.35 respectively.

Formulation of LP model to determine the production volume of each of the products such that

the profit is maximized

STEP 1. IDENTIFY THE OBJECTIVE: Determine what you want to optimize, whether it's

maximizing profit, minimizing cost, or something else.

OBJECTIVE: Maximize profit.
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STEP 2. DEFINE DECISION VARIABLES: If you're optimizing production, decision

variables could be the quantities of different products to produce.

DECISION VARIABLES: Let x and y be the production volumes of products A and B

respectively.

STEP 3. WRITE THE OBJECTIVE FUNCTION: This function expresses the objective in
terms of the decision variables. For instance, if you are maximizing profit, the objective

function might be the total revenue minus the total cost.

OBJECTIVE FUNCTION: Maximize Z = 25x + 35y (total profit)

STEP 4. SET CONSTRAINTS: Identify any limitations or restrictions on the decision
variables. These could include resource constraints, demand constraints, or production capacity

constraints.

STEP 5. FORMULATE CONSTRAINTS: Translate the limitations into mathematical

equations or inequalities involving the decision variables.

CONSTRAINTS: 10x + 15y < 80

8x + 10y < 60

STEP 6. NON-NEGATIVITY CONSTRAINTS: Typically, decision variables must be non-

negative, meaning they cannot be negative quantities.

- Non-negativity constraint: x,y = 0
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STEP 7. PUT IT ALL TOGETHER: Combine the objective function and constraints into a

single mathematical model.

Put it All Together:

Maximize 25x + 35y

Subject to: 10x + 15y < 80
8x + 10y < 60
x,y =20

This is the formulation of the linear programming problem.

2.2 SIMPLEX METHOD

Simplex method is an iteration algorithm for solving linear programming. It starts with
an initial feasible solution and systematically moves towards an optimal solution by improving
the objective function. It does this through a series of steps, where at each iteration, it identifies
a variable to enter the solution (pivot) and a variable to leave the solution. This process
continuous until no further improvement in the objective function can be achieved, indicating

the current solution is optimal.
The following is the linear programming simplex technique algorithm:

Step 1: Identify the specific issue. Write the objective function and inequality restrictions, for

example.

Step 2: Add the slack variable to each inequality expression in order to transform the provided

inequalities into equations.

Step3: Make the first simplex tableau. In the bottom row, write the goal function. Each
inequality constraint is shown here in a separate row. The problem can now be expressed as an

augmented matrix, or what is known as the initial simplex tableau.
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Step 4: To determine the pivot column, find the largest negative item in the bottom row. The
highest coefficient in the objective function is defined by the largest negative entry in the

bottom row, which will enable us to raise the objective function's value as quickly as feasible.

Step 5: Compute the quotients. We must divide the entries in the far right column by the entries
in the first column, omitting the bottom row, in order to find the quotient. The row is identified
by the least quotient. The pivot element will be the row found in this step and the element found

in the step.
Step 6: Pivot the column such that all other entries are zero.

Step 7: Close the procedure if the bottom row contains no negative items. If not, go back to

step 4.
Step 8: Lastly, ascertain the answer linked to the ultimate simplex tableau.
EXAMPLE:
Solve the following LPP using the Simplex method
Maximize: Z = 12X; + 16X,
Subject to:
10X, + 20X, < 120
8X; + 8X, < 80

Xiand X, = 0

Solution:
Max Z =12X; + 16X, + 05, + 0S5,
Subject to
10X, + 20X, +S; = 120
8X,+8X,+S5, = 80

X, X5,S1and S 2 = 0
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Initial Simplex Table

G 12 16 0 0
CBi Basic variable | X X2 St S Solution Ratio
0 Si 10 20 1 0 120 6
0 Sa 8 8 0 1 80 10
Z; 0 0 0 0
Ci—-7; 12 16 0 0
Table 2.1

Cj - coefficient of objective function
CBi - coefficient of basic variable

Z; row values are obtained by multiplying the CBi column by each column, element by

element and summing.
Optimality condition:
Formax:allC;- Z; < 0
Formin:all(;- Z; = 0

Here we have got positive values. So we don't reach at optimality. So we need to proceed for

further steps to reach optimality .

In order to proceed further, the first step is to select the maximum value in Cj — Z; corresponding

column is called key column

To find the ratio :

solution column =+ key column

Minimum value in Ratio - corresponding row is key row.
Here 20 is the key element.

X2 is an Entering variable and S is leaving variable.
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> 1% Iteration Table

R1=R1 + key element

G 12 16 0 0
CBi Basic variable | X X2 St S Solution Ratio
16 X2 1/2 1 120 0 6 12
0 Sa 4 0 2/5 1 32 8
Z; 8 16 4/5 0
Ci—-7; 4 0 -4/5 0
Table 2.2

R2 = old value - (corresponding key column value % corresponding key row value) + key

element

For max: all CJ - Zj

<0

Here we have one positive value. So we need to proceed for further steps to reach optimality.

Repeat as above

Now 4 is the key element

X1 is entering the variable and the S> is leaving the variable.

» 2" Tteration Table

G 12 16 0 0
CBi Basic variable | X X2 St S Solution
16 X2 0 1/10  -1/8 2
12 X1 1 0 -1/10  1/4 8
Z; 12 16 2/5 1 128
Ci-7 0 0 -2/5 -1
Table 2.3
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Here Cj— Zj <0

Now, we reach at optimal solution.

Optimal solution = 128
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CHAPTER 3

FLOW AND POTENTIAL IN NETWORKS

An easy way to visualize networks is in transportation or communication
systems, such as highways, railroads, pipelines, nerves, or blood arteries. Network diagrams
are easily recognized in electrical theory. Networks provide a wide range of mathematical
difficulties, from kid-friendly puzzles to complex issues that stump mathematicians.
Diagrammatically, many problems are conveniently stated as networks, especially those that
include sequential actions or separate but linked states or stages. An issue that doesn't seem to
have any structure might occasionally take on a mathematical shape that can best be understood

and resolved by viewing it as a network.

Graphs are networks in the more abstract and broad sense. Mathematicians have
been studying and researching graph theory a lot lately, and it is finding more and more
applications in a variety of fields. Graph theory is particularly significant in the subject of
operations research because, in many cases, selecting the best sequence of operations from a
finite set of possibilities that can be represented as a graph is the problem of finding an optimal

solution.

This chapter will cover a few particular types of linear programming problems that
can be solved with the aid of graph theory concepts. Instead of introducing graphs in their
abstract form, we will address specific issues and demonstrate how they can be viewed and

resolved as networks or graphs.

3.1 MINIMUM PATH PROBLEM

Assume that a graph G(V,U) has two vertices, v, and v, , and that each arc (v}, vy ) has a
number Xjj, . There are numerous paths to go from v, to v,. Every path has a length defined
as Y.Xxj, where Y.xji is the total of all the arcs that comprise the path. The challenge is to find

the path with the smallest length.
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Here the term "length" is used in a generic sense of any real number connected with
the arc and should not be regarded as a geometrical distance. A road map connecting towns is
a graph and the distance along a road between any two towns is the length of a path within the
present definition of the term, but this is only a particular case. The time or the cost involved
in going from one town to another is also a "length" under the present definition. There may

bring more abstract situation in which the length is not even non-negative. In general x;;, is a

real number, unrestricted in sign.

Many methods are there to solve the problems of minimum path. Here we

discuss about two of them. One is applicable only to the case where xj;, = 0. And the other is

used in general cases where Xy is unrestricted
3.1.1 All arc lengths non-negative

The minimum path from v, to v; can be indicated by f; . We have to find f}, . Clearly
foa =0

Let v, be a subset of V such that v, is inV}, and vy, is not inV},. Assume further that fj

Vo
Vo

has been found for each v; in v,. For any v; in V}, and not in V,, find fj + x;; so that (v}, vy)

is an arc incident from V,.

Let  fr + xpg = min (i + xj)
Where v, is an element of V,and v; is not an element of 1,
Then the minimum path from v, to vy is given by

fs = fr + X

This is the case because f, + x,is the least path that leaves 1}, along a single arc, and
we must leave V, in order to reach v;. Any additional path to vs can either follow a different,
larger single arc that leaves 1, and ends at vy, or it can follow a different, larger arc that leaves

V,, travels to another point, and then returns to vg.
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Repeat the process to create an expanded subset V.4 of V, which is defined as V4 =
Vp U {vg}. Assume that V; consists of a single vertex v, and f, = 0 and that we begin with
p = 0. The set V3, V5,..., W, Vpiq , ... are constructed in accordance with the above-described
approach. We have located f;, as soon as we reach a set in this sequence that contains v,. There

is no path that connects v, to v} if no such set can be found.

Example: With the provided graph, find the shortest path between v, and vg, where the length

of the journey is indicated by the number along a directed arc.

Fig. 3.1

The table below displays the iterations based on the previously described algorithm. The
vertices in the subset , V, are listed in the , ¥}, column. The shortest paths from vo to these
vertices are indicated under f. The arcs incident from, V, are Q'(vp), where (v}, vy) is

represented as (], k). The arc lengths are listed under x. The vertex to which this minimal

distance leads, vs, is the minimum of f + x and is presented in the expanded subset Vp+1 in

the subsequent iteration.

Table 3.1

p Vp f Q(vp) X f+x fs Vs
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0 0 (0,1) 2 2 2 1
(0,2) 6 6
(0,3) 8 8

0 0 (0,2) 6 6

1 2 (0,3) 8 8
(1,2) 3 5 5 2
(1,4) 10 12
(1,5) 8 10

0 0 (0,3) 8 8

1 2 (1,4) 10 12
(1,5) 8 10

2 5 (2,3) 1 6 6 3
(2,5) 1 6 6 5

0 0

1 2 (1,4) 10 12

2 5

3 6 (3,6) 4 10

5 6 (5,4) 1 7 7 4
(5.7) 5 11

0 0

1 2

2 5

3 6 (3,6) 4 10 10 6

4 7 (4,7) 3 10 10 7

5 6 (5,7) 5 11

0 0

1 2

2 5

3 6

4 7

5 6

6 10 (6,8) 7 17 17 8

7 10 (7.8) 10 20
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The shortest path, which passes through the vertices (0,1,2,3,6,8), is determined to be 17 in
length.

It should be understood that neither the problem description nor the solution depends on the
graph's actual drawing. If all of the vertices, arcs, and arc lengths are defined, the problem is
fully stated. Drawing a figure may not be necessary or practical in a huge problem with many

vertices and arcs.

3.1.2 Arc lengths unrestricted in sign.

In the graph G (V,U), let v, and v;, be two vertices with real, positive, or negative arc
lengths. We need to determine the shortest route between v, and v,,. It is assumed that the
graph does not contain any circuits whose total arc length is negative. Because if such a circuit
exists, it can be circled endlessly, allowing one to find an infinite solution by reducing the

path's length.

Create an arborescence with the centre v,, Vi containing all the vertices of V that can be
reached from v, along a path, and U; containing some of the arcs of U that are required to

construct the arborescence, 4, (V;,U,),V; € V,U; € U.

A path links v, and v, if Vi contains v,. This pathway is distinct inside a certain
arborescence. Numerous arborescence could imply numerous pathways. Any single
arborescence is A1. There is only one path from v, to v, if there is only one arborescence that
can occur in any given situation, and that path is the solution. There is no path from v, to v,

and no solution to the issues if Vi contains no v,,.

The arborescence's construction and methodology are simple. Draw the arcs that lead
from v,. Draw arcs (not necessarily all of them) connecting the vertices that have been so

reached to the other vertices.

It is imperative that no vertex be approached by more than one arc, meaning that no
vertex should have more than one arc incident to it. A vertex that has no incident arc is excluded

because it cannot be reached from v,. No arc incident to v, should be drawn.
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Let f; represent the path length in the arborescence from v, to any vertex v;. For every
vj in V; , the arborescence uniquely defines f; ; nevertheless, fj need not be minimal. Consider
an arc (v, vj) in G thatisn'tin A; . Compare f; with the length f, + x;; . Don't alter if f; <

fie + xk;j

If fj > fi + xxj,add the arc (v, v;) inplace of the arc incident to v; in A; . Because
of this, the arborescence is changed from A; to A,, and f; is reduced to fx + xi;, or
fj = fx = Xkj. The same amount is likewise subtracted from the lengths of the pathways
leading to the vertices and the lengths of the paths to the vertices going through v; are also
reduced to the same amount. After making these modifications, the new values of fj for each

v; in A, are computed.

Proceed as you did in A,, choosing a vertex and determining whether a different arc

leads to it via a shorter path. If so, change A, to A3 and change f; appropriately.

At some point, an arborescence A, is attained, and the process described above cannot
alter it further. In this arborescence, f; is the shortest path to v,, while a, indicates the

minimum path of each v; from v,. Here is the proof.

Proof: Let any path in G from v, to v, be represented by (v,, V1, Vg, «.., Up). Xq1 +

X1z +...+ Xpp isits length. Since A, contains all of the vertices of G that are accessible from
Vg, the vertices in this path are also in A;. According to the last paragraph's description of 4,."s

attribute, for each vertex v; in A, and for each arc (v, v;) inG,
f}‘ < fk + x]-k,

or fi = fi < xp

because otherwise A, could have been further modified. Writing these inequalities for all

vertices of the above path,
f 1= f a = Xa1,

f2 — fi < xq9,
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fb - fp < Xpb,
Adding, we get

fb - fa S xal + x12 + x23 + ...+ pr
Or,since f, = 0

fb < Xa1 + X12 + X33 + ...+ pr

We can thus demonstrate that there is no path in G that can be smaller than f}, from v,

to v,,. This path is the minimum because the path of length f, is also in G.

proved

The maximum length path can be determined by either reversing the inequality f; >
fx + xij to fj < fx + xi; as the criterion for changing an arc in the arborescence, so that
at every stage a greater path is selected against a smaller one, or by changing the sign of the

length of all arcs and then determining the minimum path.
Example: In the provided graph G of Fig. 3.2, find the minimal path from v, to v, .

With a centre vy made up of all the graph's vertices that can be accessed from v, (vg is
therefore omitted), draw an arborescence A; (Fig. 3.3) and the required number of arcs.

Observe that these arborescence can occur in large numbers. A; is one among them.
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The length f; of the paths from vy to different vertices v; of A; are as follows.
fo=0A=1f=-4fs=3f =3,fs =2fs =4f, =5
consider the vertex v, . There is an arc (v4, v,) in G which is not in A; , Such that
for=—-4<fi+x,=1+2=3.
So we leave A; unchanged.
Now consider the vertex vs . There is an arc (v,, v3) in G which is not in A, such that
fs =3>f, + x53=—4—-1=-5.

So we delete the arc(v,, v3) which is incident to v in A; and instead include the arc (v,, v3).

This gives us a new arborescence A,with the f; = 5 since no vertex is reached in A,through

v3, all other f; remain unchanged.

6 7 3
2 A
2 2\
5 4 2 2
2 3 4
0 1 g
Fig. 3.3

Coming now to v, in A, , arc is in G but not in A, such that

ﬁl, S 3>f3 +x34:_5_4:_9.
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Thus, we include (v, v4), remove the arc (v, v,), and obtain another arborescence A; with

fa = —9and, asaresult, f, = —7.

If we keep going in this manner, we eventually reach the arborescence, which is unchangeable.
The path from v, to any vertex cannot be made shorter by any other arc. Testing for each
potential alternate arc reveals this. The shortest path, with length -12, is

(vg, V3, V3, Uy, Vg, V) from v, to v5.

6 1 —¥7 3
4 -1
5% 2 4 2
Fig. 3.4 .
0 1 o1

3.2 SPANNING TREE OF MINIMUM LENGTH

Let T(V,U") be a tree such that U' € U and let G(V,U) be a connected graph with
undirected arcs. T shares the same set of vertices as G, and all of T's arcs are also arcs of G.
Then, T is said to span G, or T(V, U") is said to be a spanning tree of G(V, U). It is clear that a
graph's spanning tree is not unique. For example , in Figure 3.5, a spanning tree remains, even

after removing u; and adding u> to the tree.
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Fig. 3.5

If the length of each arc in G is supplied as a non-negative value, the task is to identify the
spanning tree with the smallest length possible. The issue arises while constructing telephone

wires or pipes that connect towns.

By xj, , we indicate the length of the arc between vj and vk. Since all of the arcs are

undirected, xj = xj, For all arcs xj, = 0

We present a strategy for resolving this issue, which requires that none of G's arcs have
the same length. We therefore presume that this requirement is met .If there are several arcs
that are the same length, it is possible to add little length variations to them without affecting

the optimal solution. For example, if
Xjk = Xpq “Xrs
we put Xpg = Xjk + € Xps = X+ 2e, e >0,

Keeping e small enough to prevent x,.; from being more than or equal to any other arc

length that is greater than x;y,.

Here is the algorithm. Consider the graph G (V, U) and its collection of vertices, V. G is
connected , therefore each vertex has an additional arcsincident associated with it.
Additionally, because every arc in U has a different length, there is always one arc that is the
shortest for every vertex among all the arcs that intersect with it. We'll refer to this Arc as a

connection between the vertex and its closest neighbour.
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One by one, go over each vertex in V' and connect it to the neighbour that is closest to
it. In this manner, we will obtain a partial graph G; (V, U;) of G that includes all of its vertices
as well as a portion of its arcs. Generally speaking, G; could be an unconnected graph made

up of multiple components, each of which is connected within itself.

Let's handle each of these parts as though it were a single vertex. We will have a new
collection of "vertices," each of which is a part of the graph Gi. Arcs of the graph G connect
each and every one of these "vertices" to one or more of the other "vertices." G would not be
connected if this were not the case. The 'distance' between two 'vertices' will be determined by
taking the arc of the smallest length between them. Once more, we go over each of these
"vertices" one at a time and adjust each one to its nearest neighbour -that is, the one that is the
closest to it. After this operation, another graph G, (V, U,) will be produced, which again may

have components

Once more, treat each of these elements as a "vertex," and connect each "vertex" to its
closest neighbour to create a graph G5(V, U3)This process is repeated until a connected graph

Gp(V,U,)is produced. The required spanning tree is this graph.

To make the above-described approach clear, we figure out an example before providing a

proof of this algorithm.

Example: Determine the graph G(V,U) of Figure 3.6's minimum spanning tree. It is an

undirected graph, as you can see.

Graph G;(V,U,) in figure 3.7 is obtained by traversing all vertices from v, to vg and
drawing the arc connecting each to its closest neighbour. The closest neighbours for v;are vs,
v, are V3, V3 are V,, and so forth. There is no connectivity in graph G, . There are three parts:
A;, A,, and A;. They are regarded as three 'vertices'. The lengths of the arcs in G that connect
Aito A,, are 14, 18, 8, 16, 11, and so the separation between A; and A, is 8. In the same way,
A, and A are separated by 9. Furthermore, the distance between A; and Aj is infinity because
there isn't an arc connecting them. A,'sand A,’s closest neighbours are A, and A1,

respectively. So we connect the two by arc (v,, vs) which measures the distance between the

two.

Page | 31




14 9

Az
Fig. 3.7

CaaC

9

ORE © - ®

NI VR

8 Fig. 3.8

As aresult, we obtain the graph G, (V, U, ) in Figure 3.8, which has the components A4
and As. Since there are just two of them, one is the other's closest neighbour. As a result, we

connect them using the dotted arc (v,, vg), which shows the distance between them. The
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shortest spanning tree is thus produced, which is a single connected graph. The tree measures

38 in length.
We now prove the algorithm.

Every vertex in G has a single nearest neighbour since G (V, U) is connected and no two
arcs have the same length. Every vertex can be connected to its neighbour to create the
component-rich graph G, (V, U;). Another graph with components, G,(V, U,), is created when
these components are connected to each other to their nearest neighbours. After doing this
process once again, we eventually obtain a graph G,(V,Uy,)with a single component; as a

result, the finished result is a connected graph.

There are no cycles on this graph. For, if possible, let it have a cycle
(Vo Vi Ve, - -+, Vg, Vg). Let's draw arrows that point to each vertex's closest neighbour on the
arcs in this cycle (keep in mind that they were initially undirected). For example, we would
mark the arrow from v, to v, if v, was v,'s closest neighbour. In this manner, an arrow will
be placed on each arc in the cycle. For example, if (v,, v},) does not receive an arrow, then
neither v, nor v, are the closest neighbours of v, and v, respectively, and so the arc

(vg, vp) should not have existed at all.

One of the following two scenarios will occur once the cycle's arcs have all been

marked.

(1) Every arc is labelled with the same sense. Let us suppose they have been marked as v, —
Vp,Vp = Vg, ...,Vg = V.. Then since v, and not v, is the nearest neighbour of v, ,x,;, >

Xpc. Similarly for other vertices; so we find that
Xab > Xpc > > Xda-

But x,;, > x4, means that the nearest neighbour of v,is not v,. This is a contradiction.

Therefore all the arcs cannot have arrow marks in the same sense.

(2) A few arcs have one sense indicated, while others have the opposing sense. The arrows
pointing to a vertex, let's say v, must then be pointed away from v, in a path of its neighbours,
v, andv, . This would imply that v, is closest to both v, and v,. This is not feasible due to the

disparity in length between the arcs. Thus there is a contradiction as well in this situation.
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Therefore, we draw the conclusion that the assumption of a cycle's existence is false

because it always results in a contradiction. For this reason, the graph Gp(V, U, ) is cycle-free.

As aresult, we demonstrate that the graph produced by this technique is a tree ; that is

a connected graph without cycles. It spans G since it has every vertex in G.

Let us assume, if possible, that the smallest spanning tree T (V, U’) is not the same as
Gp(V,Up ), in order to demonstrate that it is the smallest spanning tree. In order for the two to
differ, there needs to be an arc in Gp that is not in 7. Assume that this arc is(v,, vp,), with vy,
being v,'s closest neighbour. Allow us to present these arcs in T. Because every extra arc in a
tree creates a cycle. Let (vg, Uy, Vg, ..., Vg, V,) be the cycle. The length of the arc (vy, v,) is
bigger than that of (v,, v},) since v, is v,'s closest neighbour. Thus, the length of the resulting
tree will decrease if we remove the arc (vy, v,) from T and add (v, v}, ), which would indicate
that T is not a minimum length, contradicting the hypothesis. Thus, there isn't a Gp arc that
isn't in T. However, since both trees are spanning the same graph and should have n — 1 arcs,
where n is the number of vertices in G, the total number of arcs in Gp is the same as in T.

Consequently, Gp and T, G's minimum spanning tree, are equal.

Proved.
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CHAPTER 4
TRANSPORTATION AND ASSIGNMENT

PROBLEMS

In this section, we will examine a few linear programming problems with unique
mathematical structures. These can be solved using the simplex approach, which is a general
strategy for handling LP problems. However, the solution to their problem has been found in
simpler methods thanks to their unique properties. Due to the prevalence of a sizable number
of physical scenarios whose mathematical formulation either fits into or can be forced to fit
into these unique structures, these issues have gained significant attention and been given
unique names, such as the assignment problem and the transportation problem. Although the
titles do point to the physical circumstances in which the issues most plainly occur, they
actually refer to specific types of mathematical models rather than any physical circumstances

at all.

4.1 TRANSPORTATION PROBLEMS:

Finding the best way to move resources to different locations and from one site to
another while minimizing costs is the focus of a transportation problem, which is a type of

linear programming problem.

To put it simply, the primary goal of the transportation problem is to convey resources at

the lowest possible cost from the source to the destination.

e Another name for it is the Hitchcock Problem.
e One commodity must be transported from "m" sources (origin) to "n" destinations.
e Assumptions: Every source's supply level and every destination's demand are known.

e Objective: To reduce the overall cost of transportation.
LINEAR PROGRAMMING FORMULATION:

We define x;; as the quantity sent from warehouse i to market j in order to simplify the

transportation problem into a linear program. Given that i can assume values from
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1,2,...mand j from1,2,..n, the product of m and n determines the number of

decision variables.

Minimize:
z =Yt X Cijxyj (total cost of transportation)
Subject to:
T=1Xij < ay (supply restriction at warehouse i) fori = 1,2,..,m
Yizqixi; > bi (demand requirement at market j) fori = 1,2,..,m

x.

i =0 (non negative restrictions) for all pairs (i, j)

The constraints imposed by supply ensure that no warehouse ships more than it can hold.
Demand constraints ensure that the overall quantity sent to a market satisfies the market's
minimal demand. There are (m + n) constraints in total, excluding the nonnegativity
constraints. It is clear that the demands of the market can only be satisfied if and when the

whole supply at the warehouses equals the total demand at the marketplaces.
Put otherwise,
"> Y, b

Every supply that is available in the warehouses will be dispatched to satisfy the minimum
demands at the marketplaces when the total supply and demand are equal. All of the supply

and demand constraints would then turn into strict equations in this situation.
And we have a standard transportation problem given by,
Minimize: z = Yty Y=g Cijxij
Subject to: leixij=a;  fori=1,2,..,m
Zixij=b; forj = 1,2,.,n
xij = 0 forall (i,))

We will create a method solely for resolving a typical transportation issue. This
indicates that before a nonstandard transportation problem where supplies and demands are out

of balance can be solved, it has to be transformed into a standard transportation problem. A
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mock market or dummy warehouse can be used to accomplish this conversion, as demonstrated

below:

1.Examine an imbalanced transportation situation in which the total supply surpasses the total
demand. This is turned into a regular problem by creating a phony market to take in the surplus
product that is kept in the warehouses. As there is no actual physical movement of goods and
the dummy market doesn't exist, the unit cost of shipping from any warehouse to the dummy
market is believed to be 0. Therefore, the following standard problem is similar to the

unbalanced transportation problem:

Minimize: z =Y, YA Cyxyj
Subject to: 1 X =a fori = 1,2,..,m
21X =b; forj =12,..,.n,n+1
xij =0 forall (i,))
Where j = n + 1 is the dummy market with demand by, ,; = XiZ; a; - X7=; bj, and i n1 =

0 forall i = 1,2,...,m. Note that the value of x; ,., denotes the unused supply at warehouse
i.

2. Now consider the situation in which total demand surpasses total supply. It may be desirable
to identify a least-cost shipping plan that will provide the markets with as much as feasible,

even in cases where all of the demands cannot be satisfied. In this case, a fake warehouse is

built to fill the void. The corresponding standard problem turns into

Minimize: z =YY Cijxij
Subject to: Z}lei]- =aq; fori =1,2,...,mm+1
mlx=b forj = 1,2,..,n
xi; =20 forall (i,))
Wherei = m + 1 denotes the dummy warehouse with supply amyq = Xj=1 by - XiLia,

and  Cpmyq1; = O0forall j = 1,2,..,n. Here Xp4q,j denotes the amount of storage at

market j.
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The classic transportation problem has a significant feature: it can be expressed as a table that
shows the values of all the data coefficients (a;;, b;j, ¢;;) related to the problem. It is actually
possible to read the transportation model's objectives and constraints straight from the table.

On Table 4.1, there is a transportation table for three warehouses and four markets.

By simply equating the total of all the variables in each row to the warehouse capacities, the
supply constraints may be determined. In a similar manner, the market demands are equal to

the total of all the variables in each column to determine the demand restrictions.

In theory, we will use the more straightforward linear programming approach to solve the
transportation problem.

However, the unique form of the transportation matrix all of the variable coefficients are either
0 or 1 provides straightforward guidelines for selecting a non basic variable or eliminating a

basic variable.

Markets
M; M, M3 My
X11 Xi2 X13 X14 ai
W1 Cu Ci2 Ciz Cia
X1 X2 X23 X24 a
Ware houses W2 Coy Cx Csn Cus
X31 X32 X33 X34
w3 "
Cs Ca Css Csq
Demands by b2 b3 b4

Table 4.1
FINDING AN INITIAL BASIC FEASIBLE SOLUTION:

There are (m + n) constraints and (mn) variables in the typical transportation problem.
Generally speaking, the number of restrictions determines the number of fundamental variables

in a basic feasible solution. However, because one of the restrictions in the transportation
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problem is duplicated, the total number of variables that can have positive values is just (m+n-
1). Add up all of the supply restrictions to see this. This gives
21 Xi=1%ij = Xi%;a;, summing up the demand constraints, we get }i%, ¥, x;; =

2j=1bj . Since ¥1%; a; = ¥, b, these two equations are identical, and we have only
(m+n-1) independent constraints.

The unique nature of the transportation matrix makes it very straightforward to identify a
workable first solution to launch the simplex approach without the need for artificial variables.

We'll provide an example to show this.

EXAMPLE

Think of a transportation problem where there are four markets and three warehouses.
Warehouse capacity are as follows: a; = 3,a, = 7,and a; = 5. Market demands are as

follows: by = 4,b, = 3,b; =4 and b, = 4. The following table provides the shipping

unit cost:
M, M M; My
W, |2 2 2 1
W, |10 8 5 4
W; |7 6 6 8
Table 4.2

Since Y3_; a; = Z?zl b; = 15, we have a standard transportation problem. The transportation

table is given by
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Markets

M, M M; My
Xi1 X2 X3 Xi4 3

W1 2 2 2 1
Xo1 X2 X23 X4 7

Ware houses W2 10 3 5 .

X31 X32 X33 X34

W3 3

7 6 6 8

Demands 4 3 4 4
Table 4.3

basic feasible solution to this example will have at most six (i.e., 3 + 4 — 1) positive variables.

There are a number of ways to find an initial basic feasible solution.

4.2 ASSIGNMENT PROBLEMS

Machines M, M5, ..., M,, represent the n machines in a particular machine shop. For
these machines, a set of n distinct jobs (J4, /5, ..., /) must be assigned. The machine to which
a job is assigned determines the machining cost for that job. The cost of performing a job on
machine i is represented by ¢;; . (If a specific job cannot be done on a machine, we set the
appropriate ¢;;, to a very big amount). Every machine is limited to one task at a time. The

challenge lies in allocating tasks to the machines in a way that minimises the overall cost of

machining.

A simplistic method of addressing this issue would be to list every possible assignment
of jobs to machines. The best assignment is determined by calculating the total cost for each
assignment and selecting the one with the lowest cost. Given that there are n alternative
assignments, this will be an inefficient and costly strategy! There are 3,628,800 potential

assignments, even forn = 10!

In order to solve this using linear programming, first define
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Xij =] 1 ifjob j is assigned to machine i

0 otherwise

We have since every machine is specifically designated for a certain task.
Tx=1 fori = 1,2,..,n
In the same way, a single machine is designated for each job.
Yi=1xij =1 forj = 1,2,..,n
The objective is to minimize
z = Yicq Xj=1 Cijxij

The above is actually the formulation of a standard transportation problem with n

warehouses and n markets where a; = 1, fori = 1,2,...,n, and the demand b; =1,

forj = 1,2,...,n. The corresponding transportation matrix is given below:

Jobs
I I L Jn
Mi Cn Cn Cnm |1
M, Ca Con Cxs |1
Ml’l Cnl CnZ Cnn 1
1 1 1
Table 4.4

Non standard assignment problems
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Think of a machine shop that has M machines and N jobs. We construct dummy jobs
or dummy machines in order to turn this into a (equivalent) standard assignment problem with

an equal number of jobs and machines.

Assuming M > N, we have more machines than jobs. Next, in order to have M machines and
M jobs, we generate (M — N) dummy jobs. In order to maintain the objective function, we set
the dummy job's machining costs to zero. When a machine is given a dummy job, it remains
inactive. Comparably, some jobs cannot be assigned when there are more machines than
jobs (N > M). In this instance, (N — M) dummy machines are made, and every job will have

a zero machining cost.

Hungarian method

The method's name comes from the Hungarian mathematician Konig, who discovered a
mathematical feature that allowed for a more effective solution to the assignment problem. For

the purposes of the Hungarian technique, we'll assume that cost element (c;;) is nonnegative.

The fundamental idea behind the approach is that changing any row or column of the typical
assignment cost matrix by a constant will not change the optimal assignment. For example, if
the cost of doing any job on machine 1 is lowered by $k thenthe assignment problem's objective

function becomes

Minimize: zZ = Z;’lzl(cj - k)xij + Z?:l Z;’lzl Cl-jxij

— n n n
= Yiz1 D=1 Cijxij —k Xieq X5

But since machine 1 has to be precisely assigned to one of the jobs, 2?:1 x;; equals 1. Thus,

the newly defined objective function is

Z = (original objective) - k

We know that the objective function of a linear program, remain unchanged when a constant

1s added to it.
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Essentially, the process of finding a solution involves deducting sufficiently large

cost from each row or column such that an optimal assignment can be identified through

inspection. In order to find the smallest element, we start the process by looking at each row

(column) of the cost matrix. After that, this value is deducted from each and every element in

that row (column). This generates a cost matrix where each row (column) has at least one zero

element in it. Try to create a workable assignment now by using the costless cells. We have the

best potential task if it is feasible. This is due to the fact that the goal function's minimum value

E Z ¢;jx;j cannot be less than zero and the cost elements (c) are nonnegative. Therefore,
c—j
l

the optimal must be one that costs zero.

EXAMPLE

When the following table indicates the cost of assignment, determine the optimal assignment

of four jobs and four machines:

A A I3 Ja

M; 10 9 8 7

Mz 3 4 5 6

M3 2 1 1 2

My 4 3 5 6
Table 4.5

solution

We are faced with a standard assignment problem because the number of jobs and machines is

equal. By initially examining at the rows, subtracting can be used to get a reduced cost matrix.

1. 7 from the first row,

2. 3 from the second row,

3. 1 from the third row, and

4. 3 from the fourth row.

The resulting cost matrix is as follows:
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I I I3 J4
3 2 1 0
0 1 2 3
1 0 0 1
1 0 2 3

Table 4.6

using only the cells with zero costs,( M;)is a feasible assignment based on the given table. As

a result, this is an optimal assignment. Generally speaking, finding a feasible assignment using

cells with zero cost might not always be possible . Take a look at the following assignment

problem to demonstrate this:

EXAMPLE

Using the following cost matrix, determine the optimal solution to an assignment problem:

Solution

A A I3 Ja
10 9 7 8
5 8 7 7
5 4 6 5
2 3 4 5

Table 4.7

Each row's minimal element is first deducted from all of the row's elements. provides the

reduced-cost matrix that follows:

I I I3 J4
3 2 0 1
0 3 2 2
1 0 2 1
0 1 2 3
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Table 4.8
It is not possible to complete this feasible assignment with just cells with zero costs because
machine M, and M, both have zero costs that correspond to job J1. Subtract the fourth column's

minimal element from each of the column's elements to obtain more zeros.

A I I3 Ja
M, 3 2 0 0
Mz 0 3 2 1
M3 1 0 2 0
My 0 1 2 2

Table 4.9

A feasible assignment is still impossible since the zero cells can only be used to allocate three
jobs. In these situations, the process selects a minimum number of rows and columns and draws
lines through them so that the lines cover all of the cells that have zero costs. The maximum
number of jobs that can be allocated using the zero cells equals the minimum number of lines

required.

In our case, three lines can accomplish this in the manner shown below.

A I I3 Ja
M, 3 2 0 0
M ( 3 2 1
M3 0 2 0
M4 1 2 2
Table 4.10

Choose the smallest element that is not covered by the lines. For us, it is 1. Take this amount
and deduct it from all the uncovered elements. After that, add this number to each and every
covered element at the point where two lines overlap. This yields the reduced cost matrix that

1s shown below.
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Jl J2 J3 J4

M; 4 2 0 0

M> 0 2 1 0

M3 2 0 2 0

My 0 0 1 1
Table 4.11

Keep in mind that the process described above is equal to adding element I to the first column
of the cost matrix and subtracting it from the second and fourth rows. As a result, the optimal

assignment remains unchanged once more.

Now that a feasible assignment is achievable, and an optimal solution is to assign

My - J;3, My - J;, M3 - J, and M, - J,. The equation 7+ 5+ 5 + 3 = 20 gives the
total cost. A different, equally good optionis M; — J3, My = J,, M3 = ], and M, - J; . If
a feasible set could not obtained at this stage, the process of drawing lines to cover the zeros

must be repeated until a feasible is reached.
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CONCLUSION

The discipline of operations research is relatively recent, having emerged during World
War II and gained global recognition. One of the few nations that used operations research
from the beginning was India. Operations research is successfully applied in business,
government, and industry in addition to military and army operations. These days, practically

every field uses operations research.

It is challenging to define operations research since its parameters and subject matter
are ambiguous. In order to select potential alternative courses of action, the subject areas of
economics, engineering, mathematics, statistics, psychology, and so on give the instruments
for operations search. Linear programming, non-linear programming, dynamic programming,
integer programming, Markov process, and queuing theory etc. are some of the operations

research tools and approaches.

Applications for operations research are numerous. In a similar vein, it has several
drawbacks, most of which are associated with the costs, time, and difficulties associated with
model making. Daily operations research is becoming more and more popular since it increases
manager's ability to make good decisions. Operations research is used to make decisions in

almost every aspect of company.
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