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ABSTRACT 
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INTRODUCTION 

 

The Internet has had a profound impact on people's lives in the 21st century, and it's evident that 

ongoing advancements in information processing and telecommunications will continue to shape 

our daily routines. As we increasingly rely on electronic media for personal and professional 

activities, the secure conduct of online business transactions has become paramount. With the rise 

of apps like online banking and stock trading, the transmission of sensitive data over the Internet 

has surged. However, the technology facilitating these transactions often relies on transmitting 

data as binary code over unprotected channels, posing risks to data confidentiality, integrity, and 

validity. Users are unable to ascertain whether unauthorized individuals have intercepted or 

tampered with messages during transmission, and virtual communication lacks means of verifying 

the identity of chat partners. The National Institute of Standards and Technology (NIST) highlights 

the prevalence of sensitive information, such as social security numbers and credit card details, 

being transmitted over the Internet during transactions, underscoring the urgency of securing 

electronic transactions. Encryption emerges as a vital tool in ensuring the confidentiality and 

integrity of transactions, providing an effective means of safeguarding sensitive information. 

 

Cryptography relies on mathematical principles to encrypt and decrypt data, enabling users to 

securely transmit or store private information over unsecured networks. However, the field 

dedicated to breaking secure communication is known as cryptanalysis. In today's digital 

landscape, information security is of paramount importance, with electronic documents gaining 

popularity as replacements for traditional paper and microfilm. Governments, businesses, and 

individuals increasingly seek secure information storage through electronically stored documents, 

which offer rapid transmission, reduced storage requirements, and simplified access via databases. 

 

The swift rise in information's worth is due to its increased utility. Nonetheless, electronically 

stored data is more susceptible to security threats compared to its printed form. Electronic 

information is easier to pilfer remotely than printed documents, and electronic communication is 

more susceptible to tampering and interception. Information security involves a range of measures 
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aimed at preventing unauthorized access to electronic data, including protecting against data loss, 

manipulation, destruction, and disclosure. 

 

Mathematics plays a crucial role in cryptography, enabling the encoding and decoding of data. 

This allows users to transmit or store private information over insecure networks securely. The 

study of breaking secure communication, however, is termed cryptanalysis. In the context of 

cryptography, two individuals, typically represented as Alice and Bob (abbreviated as A and B), 

aim to communicate securely over an insecure channel, ensuring that their messages remain 

unreadable and unmodifiable by an eavesdropper, often referred to as Eve. The objective of 

cryptography is to enable two parties to communicate using codes that remain indecipherable to 

other parties. A participant involved in transmitting, receiving, or manipulating data is known as a 

party or entity, with the organization lawfully transmitting data referred to as the sender and the 

entity receiving information termed as the receiver. An entity attempting to compromise the 

security of information exchanged between the sender and receiver may assume the role of the 

receiver or sender. Such an adversary can also be described using various terms, including attacker, 

enemy, eavesdropper, opponent, or intruder. 
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Chapter 1 

PRELIMINARIES 

 

The notation a|b is used to denote that, given two positive integers, a and b, a divides b, meaning 

that b is a multiple of a. We may determine that there exists an integer k such that b = ak if a|b. 

The subsequent characteristics of divisibility directly after the definition. 

Let the numbers a, b, and c be arbitrary. 

When a|b and b|c, a|c  

When a|b and a|c, for all integers i and j, then a|(ib+jc).  

A = b or A = -b is true if a|b and b|a. 

 

1.1 THE GREATEST COMMON DIVISOR (GCD) 

The largest integer that divides both a and b is the greatest common divisor of positive integers a 

and b, or gcd (a, b). Alternatively, we may state that the number c is represented by gcd (a, b), 

meaning that if d|a, d|b, and finally d|c. We refer to a and b as relatively prime if gcd (a, b)=1. By 

using the following guidelines, we may apply the concept of GCD to a pair of arbitrary numbers. 

a = gcd(0,a) = gcd (a,0). The formula gcd (a,b) = gcd (|a|,|b|) accepts negative values.  

 Thus GCD (12, 0) = 12 and GCD (10403, 303) = 101. 

 

1.2 MULTIPLICATION BY A FIXED NON-ZERO INTEGER, A, 

IN Zp IS A PERMUTATION 

Select a prime number, p. The numbers (1·a) mod p, (2·a) mod p,..., ((p−1)·a) mod p, for every 

fixed nonzero number an in Zp, are a permutation of the set {1, 2, · · ·,p − 1}. 
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1.3 CHINESE REMAINDER THEOREM 

The equations x mod m = a and x mod n = b have a single, unique solution if m and n are relatively 

prime integers and Zm and Zn are a collection of integers x in the range of 0 to mn − 1. 

 

1.4 MODULAR MULTIPLICATIVE INVERSE 

A non-negative element x of Zn admits an inverse if and 

only if gcd( x , n ) = 1, ix + jn = gcd (x , n) = 1.  

If we can find such integers i and j, we immediately obtain  i ≡ x-1 mod n  

The computation no of the integers I and j can be done with Extended  

Euclid’s algorithm. 

 

1.5 EXTENDED EUCLID’S ALGORITHM 

Let a and b be positive integers, and denote with d their greatest common divisor , d = gcd (a , b). 

 Let q = a mod b and r be the integer such that a = rb + q , that is , q = a – rb. Euclid’s algorithm is 

based on the repeated application of the formula  

D = gcd (a , b) = gcd (b , q)  
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Chapter 2 

DISCRETE LOGARITHM PROBLEM 

 

2.1.1. MODULAR ARITHMETIC 
 

 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) 

a−b = multiple of n or a = kn+b 

 

 

2.1.2.DISCRETE LOGARITHM  
 

Discrete logarithms are logarithms defined with regard to multiplicative cyclic groups. 

If G is a multiplicative cyclic group and g is a generator of G, then from the definition of 

cyclic groups, we know every element h in G can be written as gx for some x.  

The discrete logarithm to the base g of h in the group G is defined to be x .  

For example, if the group is Z5*, and the generator is 2, then the discrete logarithm of 1 is 

4 because 24 ≡ 1 mod 5. 

 

 

2.1.3. PRIMITIVE ROOT OF A PRIME NUMBER 

 

A number ‘r’ is a primitive root modulo n if every number coprime to n is congruent to a power 

of ‘r’ modulo n. 

     OR 

‘r’ is said to be a primitive root a prime number ‘p’,  

If r1 mod p , r2 mod p , r3 mod p , … , rp-1 mod p are distinct 

 

EXAMPLE 1:  Is 2 a primitive root of prime number 5? 

SOLUTION: 
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21 mod 5 2 mod 5 2 

22 mod 5 4 mod 5 4 

23 mod 5 8 mod 5 3 

24 mod 5 16 mod 5 1 

 

2 is a primitive root of 5. 

 

EXAMPLE 2:  Is 3 a primitive root of prime number 7? 

 

SOLUTION: 

 

31 mod 7 3 mod 7 3 

32 mod 7 9 mod 7 2 

33 mod 7 6 mod 7 6 

34 mod 7 18 mod 7 4 

35 mod 7 12 mod 7 5 

36 mod 7 15 mod 7 1 

 

3 is a primitive root of 7. 
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2.1.4. DISCRETE LOGARITHM PROBLEM 
 

The discrete logarithm problem is defined as: given a group G, a generator g of the group and an 

element h of G, to find the discrete logarithm to the base g of h in the group G.  

 

Discrete logarithm problem is not always hard. The hardness of finding discrete logarithms 

depends on the groups. 

 

For Example: 

Consider gx mod p 

g →generator or primitive root of p 

p →prime number 

 

To find gx mod p in one direction is easy 

But to find x if gx mod p is given is easy if  p is a smaller value and hard if p is a larger 

value. 

So discrete logarithm problem is a one way function. 

 

NOTE: The strength of one way function is depending on how much time it takes to break it 

 

 

 

2.2. SOLUTIONS OF DISCRETE LOGARITHM PROBLEM 

 

The discrete logarithm problem (DLP) is fundamental in cryptography, particularly in the context 

of public-key cryptography and elliptic curve cryptography. There are various algorithms for 

solving the discrete logarithm problem, each with different efficiency depending on the size of the 

group or curve involved. 

 

2.2.1. BRUTE FORCE SEARCH 
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Brute force search is the most straightforward method for solving the discrete logarithm problem 

(DLP). 

 

1. BASIC IDEA:  The goal is to find x given gx mod p, where g is a generator of a group 

modulo a prime p. Brute force search involves simply trying all possible values of x until 

the correct one is found. 

2. SEARCH SPACE: Since 0 to p-1 are the possible values for the exponent x, the search 

space for brute force search is typically the integers from 0 to p-1. 

3. COMPLEXITY: The time complexity of brute force search is O(p), since it involves trying 

p different values of x. 

4. EFFICIENCY: Brute force search is the least efficient method for solving the DLP, 

especially for large prime numbers. Because of its inefficiency, it cannot be used in 

cryptographic protocols, which usually involve large prime numbers. 

5. LIMITATIONS: Larger the prime modulus or the group size, more impracticable is the 

brute force search. For example, since there are 2256 possible outcomes for x with a 256-bit 

prime modulus, brute force search is not computationally practical with current technology. 

6. USE CASES: Brute force search might be feasible in educational contexts or for small-

scale experiments with very small groups or moduli. 

In summary, while brute force search is conceptually simple, it is not a viable option for solving 

the discrete logarithm problem in practice due to its inefficiency, especially for large prime moduli. 

EXAMPLE 1: Solve log2 9 mod 11. 

SOLUTION: 

Here p=11, g=2, X=9 

Logg X ≡ n (mod p) 

X ≡ gn (mod p) 

9 ≡ 2n (mod 11) 

Try 'n' = 1, 2, 3, ... 
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9 ≡ 26 (mod 11)  

Answer is 6 

 

 

2.2.2. INDEX CALCULUS METHOD 

 

Compared to brute force, this approach is more effective, particularly for some kinds of groups, 

such as prime-order subgroups of multiplicative groups of finite fields. 

 

1. BASIC IDEA: Index calculus method is based on the idea of representing the discrete 

logarithm problem in terms of logarithms over a suitable auxiliary field. The discrete 

logarithm in the original group can be found by solving a system of linear equations in this 

auxiliary field. 

2. PRECOMPUTATION PHASE: Before solving individual discrete logarithm instances, the 

index calculus method typically involves a precomputation phase where a set of "smooth" 

elements in the group are identified. An element g is considered smooth if its order has 

only small prime factors. 

3. LINEAR ALGEBRA: Once a sufficient number of smooth elements are identified, the 

index calculus method uses linear algebra techniques to build a matrix representing 

relations between these smooth elements. These relations are derived from the factorization 

of the element’s orders. 

4. SOLVING LINEAR EQUATIONS: The next step involves solving a system of linear 

equations over a finite field using Gaussian elimination or other linear algebra techniques. 

The solutions to these equations provide information about the discrete logarithm of the 

target element. 

5. COMPLEXITY: For some kinds of groups, the index calculus approach is substantially 

faster than brute force search due to its sub-exponential complexity. However, its 

efficiency depends on the size of the field and the smoothness of elements in the group. 



 

16 
 

6. APPLICABILITY: The index calculus method is particularly effective in groups where 

efficient algorithms for factorization exist and where the number of smooth elements can 

Γbe efficiently determined. It is commonly used in cryptography for solving DLP instances 

in prime-order subgroups of finite fields, such as the multiplicative group modulo a prime. 

7. SECURITY IMPLICATIONS: The existence of index calculus method motivates the use 

of larger prime moduli or different types of groups with harder DLP instances to ensure 

cryptographic security against attacks. 

EXAMPLE 1: Find  

x ≡ log22 4 (mod 3361) 

SOLUTION:  

4 ≡ 22X (mod 3361) 

Precomputation: 

1. (Choose Factor Base) Select a factor base Γ, consisting of the first 4 prime 

numbers, 

Γ = {2,3,5,7}, with p4 ≤ 7, the bound of the factor base. 

2. (Compute 22e mod 3361) Randomly choose a set of exponent e ≤ 3359, 

compute 22e mod 3361, and factor it as a product of prime powers: 

2248  ≡  25 · 32 (mod 3361),  

22100 ≡ 26 · 7 (mod 3361),  

22186 ≡ 29 · 5 (mod 3361),  

222986 ≡ 23 · 3 · 52 (mod 3361). 

 

3. (Smoothness) The above four relations are smooth with respect to B = 7. 

Thus, 

48 ≡ 5 log22 2 + 2 log22 3 (mod 3360), 

100 ≡ 6 log22 2 + log22 7 (mod 3360), 

186 ≡ 9 log22 2 + log22 5 (mod 3360), 

2986 ≡ 3 log22 2 + log22 3 + 2 log22 5 (mod 3360). 
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Compute k ≡ logβ α (mod p) 

1. Compute  

Log22 2 ≡ 1100 (mod 3360), 

Log22 3 ≡ 2314 (mod 3360), 

Log22 5 ≡ 366 (mod 3360), 

Log22 7 ≡ 220 (mod 3360). 

 

2. (Compute 4 · 22r mod p) Randomly choose exponent r = 754 ≤ 3659 and 

compute 4 · 22754 mod 3361. 

3. (Factor 4 · 22754 mod 3361 over Γ) 

4 · 22754 ≡ 2 · 32 · 5 · 7 (mod 3361). 

Thus, 

Log22 4 ≡ −754 + log22 2 + 2 log22 3 + log22 5 + log22 7 ≡ 2200. 

That is, 

222200 ≡ 4 (mod 3361). 

 

 

2.2.3. POLLARD’S RHO ALGORITHM 

 

Pollard's Rho Algorithm is a probabilistic algorithm used to solve the discrete logarithm problem 

(DLP) and integer factorization. 

 

1. BASIC IDEA: Pollard's Rho Algorithm relies on the concept of a "random walk" in the 

group to find a collision. By repeatedly applying a function and tracking the resulting 

sequence of elements, eventually, two elements will collide, indicating a cycle. 

2. FUNCTION CHOICE: Algorithm uses a function that maps elements of the group to other 

elements. A common choice for this function is a polynomial function modulo p, where p 

is the prime modulus of the group. The polynomial function with good random behavior 

and efficient collision is chosen. 

3. FLOYD’S CYCLE DETECTION: Once the random walk generates a sequence of 

elements, the algorithm uses Floyd's cycle detection algorithm to identify a cycle within 
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the sequence. This involves using two pointers - one moving at twice the speed of the other 

- to detect a cycle. 

4. COLLISION DETECTION: When a cycle is detected, it means that two elements in the 

sequence have collided. These collided elements provide information that can be used to 

compute the discrete logarithm. 

5. COMLEXITY: The time complexity of Pollard's Rho Algorithm depends on the size of the 

group and the behavior of the chosen function. Since it has a sub-exponential complexity, 

it is generally more efficient than brute force search but potentially slower than more 

complex algorithms such as the index calculus. 

6. APPLICABILITY: Pollard's Rho Algorithm is particularly effective in groups where 

efficient collision-finding functions can be defined. It is commonly used in cryptographic 

protocols, especially in contexts where the DLP instances are relatively small or where 

other algorithms are not applicable. 

7. SECURITY IMPLICATIONS: The efficiency of Pollard's Rho Algorithm highlights the 

importance of choosing sufficiently large prime moduli or other types of groups to ensure 

cryptographic security against attacks. Also, the efficiency of the algorithm highlights the 

necessity of updating cryptographic systems on a regular basis as processing power grows 

and new algorithms are created.  

EXAMPLE 1: Consider a prime modulus p = 19 and a generator g = 3. We want to find 

the discrete logarithm of y = 14, i.e., we want to find x such that gx ≡ y (mod p). 

 

SOLUTION:  

1. Initialization: 

 We start with two “pointers” or variables, x and y, both initialized to 1. 

 We also define a function f(x) = gx mod p, where g = 3 and p = 19. 

2. Random walk: 

 At each step, we update x and y using the function f(x). 

 We update x by computing f(x) once. 

 We update y by computing f(f(y)) twice. 

 We repeat these steps until we find a collision, i.e., when x ≡ y mod p 

3. Cycle Detection: 
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 We use Floyd's cycle detection algorithm to detect when x and y collide. 

 We maintain two pointers, one moving at twice the speed of the other. 

 When the pointers meet, we know there’s a cycle. 

4. Collision Resolution: 

 Once a collision is detected, we backtrack to find the values of x and y 

that lead to the collision. 

 We calculate the difference between the values of x and y when they 

collide. This difference represents the discrete logarithm. 

STEPS: 

x = y = 1 

x1 = f(x0) = f(1) = 3 

y1 = f(f(y0)) = f(f(1)) = f(3) = 9 

x2 = f(3) = 33 mod 19 = 8 

y2 = f(f(9)) = f(3) = 8 

x2 = y2 (collision detected) 

x =3 & y = 8 (values of x and y when they collided) 

x – y = 3 – 8 = -5 

Since -5 ≡ 14 mod 19, we have found the discrete logarithm of y = 14 with 

respect to base g = 3 and modulo p = 19. 

 

2.2.4. GENERAL NUMBER FIELD SIEVE(GNFS) 

 

The General Number Field Sieve (GNFS) is an extension of the Number Field Sieve (NFS). 

It is one of the most efficient algorithms for factoring large integers and has important implications 

for the security of cryptographic systems. 

 

1. BASIC IDEA: The General Number Field Sieve (GNFS) operates in accordance with the 

fundamental principles of the Number Field Sieve (NFS) method, yet integrates further 

enhancements and refinements in order to enhance overall efficiency. The process involves 

the utilization of sieving techniques to identify smooth relations, subsequently applying 
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linear algebra methodologies to address a set of linear equations, and ultimately combining 

the results to determine the prime factors of the specified integer. 

2. SPECIAL NUMBER FIELDS: To construct the linear algebra step more efficiently, 

special number fields called algebraic number fields are used. These number fields are 

chosen based on properties that make them suitable for the factorization task. 

3. SIEVING: To efficiently find smooth relations, GNFS uses a highly optimized sieving 

algorithm. To improve the efficiency of the sieving process, advanced techniques such as 

lattice sieving and large prime variation are often used. 

4. LINEAR ALGEBRA: The linear algebra step in GNFS is optimized to handle large 

matrices efficiently. To solve the system of linear equations more quickly, advanced 

techniques such as block Lanczos algorithms and lattice reduction methods are employed. 

5. COMPLEXITY: GNFS has a time complexity that is sub-exponential in the size of the 

target integer, making it significantly faster than brute force methods for factoring large 

integers. The size of the target integer and the efficiency of implementation are the factors 

on which the complexity of GNFS depends. 

6. APPLICABILITY: The General Number Field Sieve (GNFS) is extensively employed for 

the factorization of large integers within cryptographic schemes that rely on the RSA 

algorithm. It is capable of factoring integers with hundreds of digits efficiently, making it 

a critical tool for ensuring the security of cryptographic systems. 

7. SECURITY IMPLICATIONS: The efficiency of GNFS highlights the importance of using 

sufficiently large key sizes in cryptographic systems to resist attacks based on integer 

factorization. Cryptographic systems must be periodically updated to increase key sizes 

and maintain security against advances in factorization techniques.  
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Chapter 3 

INTEGER FACTORISATION PROBLEM 

 

INTEGER FACTORISATION 

Integer factorization is the process of decomposing a complete number into a smaller integers  

which , when multiplied together , give the original number. This is a fundamental problem in 

number theory with applications in cryptography, particularly  in public –key cryptography. 

 General  Number  Field  Sieve (GNFS); 

 Pomerance’s  Quadratic  Sieve (QS); 

 Lenstra’s  Elliptic  Curve  Method (ECM); 

 Pollard’s ƿ and p-1 Methods; 

Integer factorization becomes significantly harder as the numbers to be factored grow larger , 

which is why it forms the basis of many cryptographic algorithms like RSA .The security of RSA 

encryption , for example , relies on the difficulty of factoring the product of two large prime 

numbers.  

 

BASIC CONCEPTS 

The integer factorization Problem (IFP) may be described as follow; 

IFP :=  {Input : n∈ composites 

 {Output : f such that f ǀ n & 1 <f <n 

The most common equation for integer  factorization is the product of prime numbers that 

composes the integer . For example , if you have the integer n , its factorization equation would 

be: 

      n = Ƥ1^a1 × Ƥ2^a2× Ƥ3^a3 . . .× Ƥk^ak 
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where Ƥi are prime numbers and ai are their corresponding exponents. 

Generally speaking , the most useful factoring algorithms fall into one of the following two main 

classes: 

(A)   General-purpose factoring algorithms have a runtime primarily determined by the size of 

the number N being factored ,rather than being heavily influenced by the size of the 

discovered factor p.  

(B)  Special purpose factoring algorithms : The running time depends mainly on the size of ƿ 

(the factor found) of n. 

Note that there is a quantum factoring algorithms, first proposed by Shor, which can run in 

polynomial-time 

 

3.1  ƿ and ƿ-1 Methods 

The ρ (rho) method was developed by John Pollard in 1975, while the p − 1 method was devised 

by Peter Montgomery in 1987. The basic concept behind the ρ (rho) and p − 1 methods lies in 

exploiting properties of modular arithmetic and the multiplicative structure of integers to 

efficiently factorize large composite numbers. 

The method uses an iteration of the form: 

   x0 = random(0, n − 1),  

xi ≡ f (xi−1) (mod n), i = 1, 2, 3,... 

where x0 is a random starting value, n is the number to be factored, and f ∈ Z[x] is a polynomial 

with integer coefficients; usually, we just simply choose f (x) = x2 ± a with a = −2, 0. Then starting 

with some initial value x0, a “random” sequence x1, x2, x3,... is computed modulo n in the following 

way: 

x1 = f (x0) 

x2 = f ( f (x0)) = f (x1) 

x3 = f ( f ( f (x0))) = f ( f (x1)) = f (x2) 
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 . 

 .  

xi = f (xi−1).  

Let d be a nontrivial divisor of n, where d is small compared with n. Since there are relatively 

few congruence classes modulo d (namely, d of them), there will probably exist integers xi and 

xj which lie in the same congruence class modulo d, but belong to different classes modulo N; 

in short, we will have 

xi  ≡ xj (mod d), 

 xi ≡ xj (mod n). 

 

EXAMPLE 1.1 

Let n = 1387 = 19 · 73, f (x) = x2 − 1 and x1 = 2. Then the “random” sequence x1,x2,x3….. is as 

follow: 

2, 3, 8, 63, 1194, 1186, 177, 814, 996, 310, 396, 84, 120, 529, 1053, 595, 339  

where the repeated values are overlined. Now we find that 

x3 ≡ 6 (mod 19) 

x3 ≡ 63 (mod 1387) 

x4 ≡ 16 (mod 19) 

x4 ≡ 1194 (mod 1387)  

x5 ≡ 8 (mod 19) 

x5 ≡ 1186 (mod 1387) 

. 

. 

So we have  

gcd (63 − 6, 1387) = gcd (1194 − 16, 1387) = gcd (1186 − 8, 1387) =···= 19. 

Of course, as mentioned earlier, d is not known in advance, but we can keep track of the integers 

xi which we do know, and simply compare xi with all the previous xj with j < i, calculating gcd 

(xi− xj, n) until a nontrivial gcd occurs: 
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gcd (x1 – x0, n) = gcd (3 − 2, 1387) = 1, 

gcd (x2 – x1, n) = gcd (8 − 3, 1387) = 1, 

gcd (x2 – x0, n) = gcd (8 − 2, 1387) = 1, 

gcd (x3 – x2, n) = gcd (63 − 8, 1387) = 1, 

gcd (x3 – x1, n) = gcd (63 − 3, 1387) = 1, 

gcd (x3 – x0, n) = gcd (63 − 2, 1387) = 1, 

gcd (x4 – x3, n) = gcd (1194 − 63, 1387) = 1, 

gcd (x4 – x2, n) = gcd (1194 − 8, 1387) = 1, 

gcd (x4 – x1, n) = gcd (1194 − 3, 1387) = 1, 

gcd (x4 – x0, n) = gcd (1194 − 2, 1387) = 1, 

gcd (x5 – x4, n) = gcd (1186 − 1194, 1387) = 1, 

gcd (x5 – x3, n) = gcd (1186 − 63, 1387) = 1, 

gcd (x5 – x2, n) = gcd (1186 − 8, 1387) = 19 

So after 13 comparisons and calculations, we eventually find the divisor 19. 

 

Illustration of ƿ Method 

 

    

EXAMPLE 1.2 

Let once again n = 1387 = 19 · 73, f (x) = x2 − 1, and x0 = y0 = 2. By comparing pairs xi and x2i , 

for i = 1, 2,..., we get: 
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f (y0) = 22 − 1 = 3, 

 f ( f (y0)) = 32 − 1 = 8 = y1 

 =⇒ gcd (y1 – x1, N) = gcd (3 − 8, 1387) = 1 

 f (y1) = 82 – 1 = 63, 

 f ( f (y1)) = 632 − 1 = 1194 = y2 

 =⇒ gcd (y2 – x2, N) = gcd (8 − 1194, 1387) = 1 

 f (y2) = 11942 − 1 mod 1387 = 1186, 

 f ( f (y2)) = 11862 − 1 mod 1387 = 177 = y3 

 =⇒ gcd (y3 – x3, N) = gcd (63 − 177, 1387) = 19. 

The divisor 19 of 1387 is then found. 

 

EXAMPLE 1.3 

Use p − 1 method to find three prime factors of 271 − 1. 

SOLUTION 

The ƿ-1 method is a factorization method based on Fermat's Little Theorem. It's particularly useful 

when p−1 has only small prime factors. Here's how it works: 

Given a number n and a base a^n-1 ≡ 1 mod n, then either n is prime , or n shares a common factor 

with a^n-1 – 1. 

Let’s apply this method to find three prime factor of 271 -1 = 270: 

1. Choose a suitable base a . common choices include small prime numbers. Let’s try a = 2. 

2. Compute 2^270 mod 271. This can be done efficiently using repeated squaring modulo 

271. 

2^270 mod 271 ≡ 1 

Since 2^270 ≡ 1 mod 271 , we know that either 271 is prime , or it shares a factor with 

2^270-1. 

3. Let’s find the greater common divisor (gcd) of 2^270 -1 and 271. This can be done using 

an algorithms like the Euclidean algorithm. 
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gcd(2^270-1,271)=gcs(1,271) =1 

since the gcd is 1 , it indicates that 271 is a prime number. 

So, using the ƿ -1 methods ,we’ve found one prime factor of 271 -1 , which is 271. 

 

3.2 lenstra’s elliptic curve Method 

Lenstra's elliptic curve factorization method, also known as the Lenstra elliptic curve 

factorization algorithm (ECM), is a powerful technique for factoring large composite integers 

into their prime factors. The method was proposed by Hendrik Lenstra in 1987 and builds upon 

the properties of elliptic curves over finite fields. 

The basic idea behind Lenstra's ECM is to exploit the group structure of points on elliptic 

curves to find factors of a given integer N. It involves randomly choosing points on an elliptic 

curve defined over a finite field and performing operations on these points to search for non-

trivial factors of N. 

 

The algorithm proceeds as follows: 

1. Choose an elliptic curve : select an elliptic curve  E defined over a finite ǀFp , where Ƥ is 

a prime number . the curve equation is typically in the form y^2 =x^3 +ax+b  where a and 

b are coefficient chosen such that the curve has a certain properties necessary for the 

algorithm. 

 

2. Choose a point : Randomly select a point P on the elliptic curve E defined over ǀFP 

 

3. Factor finding : Use scalar multiplication on P to generate a sequence of points P,2P,3P,. 

. . ,KP. At each step, perform operations modulo N to avoid excessively large integers. If, 

at any point, the algorithm encounters a point with a small order or a point that fails to 

satisfy certain conditions, it can be used to find a non-trivial factor of N. 
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4. Repeat or switch curves : If the algorithm does not find a factor, repeat the process with 

a different curve or different starting point. The efficiency of the algorithm can be improved 

by using various optimization techniques, such as using curves with special properties or 

employing multiple curves simultaneously. 

Lenstra's ECM is particularly efficient at finding small prime factors of composite numbers, 

making it a valuable tool for integer factorization, especially in the context of cryptographic 

protocols where the security relies on the difficulty of factoring large numbers. However, it is 

less effective for factoring semiprime numbers with large prime factors. 

 

EXAMPLE 2.1 

Let's say we want to factor the composite number N =91 

SOLUTION 

1. Choose an elliptic curve :  we can choose an elliptic curve defined over a finite field , 

such as E :y^ =x^3 – 3x + 4 over the prime field ǀF97 

2. Choose a point : we randomly select a point P on the elliptic curve. Let’s say P =(17,10). 

3. Factor finding: we perform scalar multiplication on P to generate a sequence of points 

.modulo N .For instance , 2P = (29,17), 3P =(77,5) , 4P =(26,16) and so on. At some point, 

we may encounter a point that helps us find a non-trivial factor of N 

4. Repeate or switch curves : If needed, we can repeat the process with a different curve or 

starting point until we find the factors. 

 

EXAMPLE 2.2 

Let's say we want to factor the composite number N =143 

SOLUTION 

1. Choose an elliptic curve : we can choose an elliptic curve. Such as :y^2=x^3-3x+5 over the 

prime field ǀF149. 

2. Choose a point : we randomly select a point P on the elliptic curve. Let’s say P = (37,42). 
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3. Factor finding : We perform scalar multiplication on P modulo N. For example, 

2P=(141,134), 3P=(94,88), 4P=(26,27), and so on. At some point, we may encounter a point 

that helps us find a non-trivial factor of N 

4. Repeat or switch curves : If needed, we can repeat the process with a different curve or 

starting point until we find the factors. 

These are simplified examples, and in practice, the algorithm involves more complex calculations 

and optimizations. Additionally, the choice of curve and starting point can significantly affect the 

efficiency of the factorization process. 
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Chapter 4 

RSA CRYPTOGRAPHY 

RSA cryptology, named after its creators Rivest, Shamir, and adleman, is a widely used encryption 

algorithm. It relies on the mathematical difficulty of factoring large prime numbers to secure data 

transmission. In RSA , a public key is used for encryption, while a private key is used for 

decryption. This asymmetry allows secure communication over insecure channels. RSA is a 

cornerstone of cybersecurity, used in HTTPS, SSH, and other secure protocols.  

 

RSA Encryption relies on the mathematical properties of large prime numbers and modular 

arithmetic.let’s see how it works; 

 

1. Key Generation:  

Choose two large prime numbers, p and q. 

Compute their product, n = p * q. This is used as the modulus for both the public and private keys. 

Compute Euler's totient function, φ(n) = (p-1)(q-1). 

Choose an integer e such that 1 < e < φ(n) and e is coprime with φ(n). This is the public exponent. 

Compute the modular multiplicative inverse d of e modulo φ(n). This is the private exponent. 

 

2. Encryption: 

  To encrypt a message M,the sender uses the recipients public key(e,n). 

  

                       C ← Me mod n                                            (RSA Encryption)  

 

3. Decryption 

  

To decrypt the ciphertext C, the recipient uses their private key (d, n). 

 

                      M ←Cd modn                                                 (RSA Decryption) 

The security of RSA relies on the difficulty of factoring the modulus n into its prime factors p and 

q. As long as n is sufficiently large and remains secret, it is computationally infeasible to determine 

d from e and n, making RSA a secure encryption scheme. 
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Using RSA for Digital Signatures 

It is implied that the RSA cryptosystem directly allows digital signatures by the symmetry of the 

encryption and decryption procedures. Indeed, by using the decryption function on message M, a 

digital signature S is produced. 

           

                        S  ← Md modn                         (RSA signature) 

 

The encryption function is now used to verify the digital signature S.i.e by checking ,  

 

                       M ≡  Se ( mod n)                       (RSA verification) 

 

Analysis and Setup for RSA Encryption 

 

It is easy to analyse the running times for RSA encryption, decryption, signatures, and verification. 

In fact, the FastExponentiation () function can be used to do the constant number of modular 

exponentiations needed for each such operation. 

 

THEOREM 2  

Let n represent the RSA cryptosystem's modulus. The arithmetic operations required for RSA 

encryption, decryption, signing, and verification are O (log n).  

The public and private key pairs must be created in order to configure the RSA cryptosystems. 

Specifically, we must calculate the associated public key (e, n) and private key (d, p, q). It involves 

;  

 

 choosing two randomly chosen primes, p and q, with a specified bit count. Primality testing 

of the random integers can be used to achieve this. 

● Choosing an integer that is relatively prime to Φ (n). To do this, choose primes less than Φ 

(n) at random until we find one that does not divide Φ (n). In actuality, checking small 

primes from a list of known primes is sufficient 

● In ZΦ (n), find the multiplicative inverse d of e. The extended Euclid's algorithm can be used 

for this. 
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HASH FUNCTIONS 

 

Hash functions are often used in information security applications and are very helpful. A 

mathematical operation known as a hash function transforms an input numerical value into another 

numerical value that has been compressed. The hash function accepts arbitrary-length inputs, but 

its result is always of a fixed length. Message digest, or just hash values, are values that a hash 

function returns. 

 

 

FEATURES OF HASH VALUES         

 

1.  Fixed length output 

● Data of any length can be transformed into a fixed length using a hash function. 

Hashing the data is a common term used to describe this procedure. 

● Because hash functions are typically significantly smaller than input data, they are 

also referred to as compression functions. 

● Since hash is smaller representation of a larger data, it is  

● also referred to as a digest. 

● An n-bit hash function is a hash function that produces n bits of output. Well-known 

hash algorithms provide values in the 160–512 bit range. 

 

 

            2. Efficiency of operation 

●  Computation of h(x) for any hash function h given input x is often a quick process.    

● Compared to symmetric encryption, hash functions are much faster 

computationally. 

 

 

            PROPERTIES OF HASH FUNCTIONS        

                 The following characteristics are needed for the hash function to be a useful 

cryptographic tool: 

 

              1.Pre - Image Resistance    
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● A hash function should be computationally difficult to reverse according to 

this criteria. 

● Stated otherwise, if a hash function (h) yields a hash value (z), then it should 

be a challenging task to identify any input value (x) that hashes to z. 

● This property guards against an attacker attempting to locate the input with 

just a hash value. 

 

              2. Second Pre - Image Resistance                                                                                                                

●  This property states that it should be difficult to find another input with the same hash 

given an input and its hash.          

● Put differently, if a hash function h yields the hash value h(x) given an input value x, then 

it should be challenging to discover another input value y such that h(y) = h(x). 

● This feature of the hash function guards against an attacker who obtains the input value 

and its hash and tries to replace the original input value with a false value that is acceptable. 

 

 3. Collision Resistance 

● Because of this characteristic, it ought to be challenging to discover two distinct 

inputs of any length that produce the same hash. Another name for this 

characteristic is collision-free hash functions. 

 

          APPLICATIONS OF HASH FUNCTIONS 

Hash functions are used in two main applications. 

1. Password storage 

Password storage is protected using hash functions 

● The hash values of passwords are stored in files by most login processes, 

rather than the password being stored in clear text.  

● The password file is made up of a table with pairings that have the format 

                  2.Data integrity check 

                         One of the most used applications of hash functions is data integrity check. It                            

is employed in the generation of data files and checksums. 

One-way hash functions : sometimes known as message digests or fingerprints, are frequently 

employed with public-key cryptosystems. The following is a non-formal explanation of this 

function. An one-way hashing algorithm , A string (message) M of any length is mapped by H to 

an integer d = H (M) with a set number of bits, known as the digest of M, which meets the following 

requirements: 

1.The digest of a string M can be computed fast given the string M. 
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2. It is not computationally possible to obtain M given the digest d of M, but not M.  

When two strings M1 and M2 cannot be found using the same digest, then a one-way hash function 

is considered strongly collision-resistant. Similarly, if it is computationally impossible to find 

another string M0 with the same digest given a string M, then the function is considered collision-

resistant. 

Digital signature creation can be speed up  by the use of one-way hash algorithms. It is possible to 

sign a message's digest rather than the message itself if we have a collision-resistant, one-way hash 

function; the signature S is therefore provided by: 

S = D ( H ( M ) ) 
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Chapter 5 

APPLICATIONS OF ENCRYPTION 

 

5.1. APPLICATIONS OF ENCRYPTION 

 

1. SECURE COMMUNICATION: 

 
Encryption serves as a vital tool for safeguarding confidential data transmitted across 

networks, including emails, instant messages, and online banking transactions. Its role is 

to encode information in a manner that only authorized individuals can decipher, ensuring 

the security and integrity of the data during transmission and preventing unauthorized 

access or tampering. 

 

2. DATA PROTECTION: 

 
Encryption aids in protecting data stored on various devices such as computers, 

smartphones, and servers, thereby preventing unauthorized access in the event of theft or 

loss. 

 

3. AUTHENTICATION: 

 
Encryption plays a crucial role in digital signatures and certificates by confirming the 

legitimacy of users and websites, thus guaranteeing secure connections. 

 

4. SECURE TRANSACTIONS: 

 
Encryption enhances the security of online transactions by encoding credit card details, 

passwords, and other confidential data while facilitating payment procedures. 

 

5. FILE PROTECTION: 

 
Encryption can be utilized on single files or entire disk drives to prevent unauthorized 

entry, particularly for sensitive documents or intellectual property. 

 

6. PRIVACY PRESERVATION: 
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Encryption contributes to safeguarding privacy by ensuring that only authorized 

individuals can access personal data, thereby reducing the risk of surveillance or identity 

theft. 

 

 

7. REGULATORY  COMPLIANCE: 

 
Industries like healthcare and finance are mandated to employ encryption for sensitive data 

to meet regulatory requirements such as HIPAA and GDPR. 

 

8. SECURE MESSAGING: 

 
End-to-end encryption within messaging applications guarantees that only the sender and 

designated recipient can access messages, thereby enhancing privacy and confidentiality. 

 

9. DATA INTEGRITY: 

 
Encryption methods can additionally serve to verify data integrity by identifying any 

unauthorized alterations or tampering. 

 

 

 

 

 

5.2. END-TO-END ENCRYPTION IN WHATSAPP 

 
End-to-end encryption on WhatsApp guarantees that only the sender and the designated 

recipient(s) possess the ability to view the messages. End-to-end encryption within WhatsApp 

offers users high levels of privacy and security, ensuring that only the sender and designated 

recipient(s) can access the content of their messages. 

 

1. KEY GENERATION:  
 

Upon initiating usage of WhatsApp, the application creates a set of cryptographic keys 

specifically for you, consisting of a public key and a private key. 

 

2. PUBLIC KEY EXCHANGE: 
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Upon initiating usage of WhatsApp, the application creates a set of cryptographic keys 

specifically for you, consisting of a public key and a private key. 

 

3. MESSAGE ENCRYPTION: 

 
When you transmit a message, your WhatsApp application encrypts it utilizing the public 

key of the recipient. Consequently, solely the recipient's device, equipped with the 

corresponding private key, possesses the capability to decrypt and access the message. 

 

4. END-TO-END ENCRYPTION: 

 
Encryption takes place on your device and persists until the recipient's device decrypts the 

message. This guarantees that no entity, including WhatsApp, can intercept and view your 

messages during transmission. 

 

5. SECURITY VERIFICATION: 

 
WhatsApp offers a security verification function, enabling users to confirm the legitimacy 

of their conversations through the comparison of security codes. This measure assists in 

preventing man-in-the-middle attacks and upholding the integrity of communication. 

 

 

 

 

 

5.3. ENCRYPTION IN EVERYDAY LIFE 

 
Encryption is essential in multiple aspects of daily life, ensuring privacy, security, and integrity 

in various digital interactions. 

 

1. Messaging Apps: 

 
Messaging platforms such as WhatsApp, Signal, and iMessage employ encryption to 

safeguard the confidentiality of conversations, guaranteeing that only the sender and 

recipient possess the ability to access the content. 

 

2. Email: 

 
Secure email providers utilize encryption to safeguard the privacy of email 

communications, inhibiting unauthorized access to the contents of emails. 
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3. Online Banking: 

 
Financial institutions and banks employ encryption to ensure the security of online banking 

transactions, safeguarding sensitive details like account numbers, passwords, and financial 

activities from interception and unauthorized access. 

 

4. Online Shopping: 

 
E-commerce platforms utilize encryption to safeguard transactions, encoding credit card 

details and personal information during online purchases to prevent unauthorized access 

and fraudulent activities. 

 

5. Social Media: 

 
Social media networks utilize encryption to safeguard user data and communications, 

thereby ensuring the privacy and security of personal information exchanged on these 

platforms. 

 

6. File Storage and Sharing: 

 
Encryption is employed by cloud storage platforms like Google Drive and Dropbox to 

safeguard files stored on their servers, thereby ensuring that only individuals with 

authorization can access and make changes to the data. 

 

7. Smartphones and Devices: 

 
Encryption safeguards data stored on smartphones, laptops, and other devices, ensuring the 

protection of personal information, photos, and documents in the event of loss or theft. 

 

8. Web Browsing: 

 
Encryption safeguards data stored on smartphones, laptops, and other devices, ensuring the 

protection of personal information, photos, and documents in the event of loss or theft. 
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CONCLUSION 

 

The security of the Internet is improving, especially regarding the infrastructure designed to protect 

financial transactions, which is advancing as the Internet becomes increasingly integral to business 

operations. With the rising popularity of multicast communication, it is reasonable to anticipate 

and prepare for the extension of the fundamental technology that safeguards multicast 

communication. 

 

Cryptography is a potential solution to numerous challenges associated with using the Internet for 

communication. However, there are persistent concerns regarding the potential pitfalls of incorrect 

implementations, given that cryptography relies on the precise application of complex 

mathematical formulas and protocols. Additionally, the crucial role of users in providing the 

correct keys adds another layer of concern regarding communication security. 

 

When employing cryptography technology securely, it's important to carefully manage how public 

keys are associated with user identities, how stolen keys are detected and revoked, and the duration 

for which a stolen key remains valuable to a criminal. Despite the intriguing nature of 

cryptography, its efficacy hinges on user behavior since security ultimately concerns humans. 

Users often choose easily memorable keys, distribute them widely, and may neglect to update them 

for extended periods. The complexity of cryptography renders many individuals functionally 

unable to comprehend it, resulting in a lack of motivation to adhere to cryptographic security 

protocols. 

 

The importance of cryptography in security will continue to increase as society increasingly relies 

on automated information resources. Enhanced methods for access control and data security will 

be essential for electronic networks used in government operations, financial transactions, e-

commerce, inventory management, service delivery, data storage, and distributed computing. 

Cryptography provides a straightforward means of securing information. However, some modern 

applications, such as banking systems, consider DES (Data Encryption Standard) to be insecure, 

supported by analytical discoveries revealing theoretical weaknesses in the cipher. 
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