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                                           INTRODUCTION 

 

The beta and gamma functions are two important mathematical functions that 

arise in various branches of mathematics, including calculus, analysis, and 

mathematical statistics. They are extensions of the factorial function and play crucial 

roles in solving problems involving integration, differentiation, and series 

representations. This project deals with the important properties and applications of beta 

and gamma functions along with the concept of Improper integrals and how the Beta 

and Gamma functions are closely connected to it and with each other. 

First chapter being the introduction, the second one deals with Improper 

Integrals. Improper integrals are definite integrals where one or both the limits of 

integration extend to infinity or where the function being integrated has a singularity 

within the interval of integration. These integrals do not fit the standard definition of a 

definite integral, but they can still be evaluated by considering limits. The chapter also 

deals with the two types of improper integrals, their convergence and divergence and 

the convergence tests of two types of improper integrals. 

  The second chapter is about Beta functions. The Beta function, denoted by 

β(x, y), is a function in mathematics that is used to extend the factorial function to real 

and complex numbers. We deal with basic definition and the convergence of beta 

function along with the elementary properties. 
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The third chapter is about Gamma functions. The gamma function, denoted by 

Γ(z), is an extension of the factorial function to complex and real numbers (except 

negative integers). It is defined for all complex numbers except non-positive integers. 

In this chapter we deal with the basic definition, convergence of gamma function, the 

recurrence formula for gamma function and the relation between beta and gamma 

functions along with a few examples. 
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                      CHAPTER 1 

                               IMPROPER INTEGRALS 

Improper integrals are definite integrals in which one or both the limits of 

integration extend to infinity or where the integrand has a singularity within the interval 

of integration. These integrals do not fit the standard definition of a definite integral, 

but they can still be evaluated by considering limits. 

There are two types of improper integrals: 

1. Type 1: Infinite limits of integration. 

       Type 1 improper integrals have one or both limits of integration extending to 

infinity. For example: 

                   ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 

              ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

−∞
 

To evaluate the integrals, we take the limits:                                                                                                                    

             log𝑐→∞ ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 

               log𝑐→−∞ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐
 

Example1: 

        ∫
1

𝑥2

∞

1
𝑑𝑥  
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Here, the function 
1

𝑥2
 is unbounded as x approaches infinity. To evaluate this integral, 

we take the limit: 

lim
𝑏→∞

∫
1

𝑥2

𝑏

1

 

Then, we can integrate the function from 1 to b, and take the limit as b 

approaches infinity. In this is case, the integral converges to 1.  

2. Type 2: Discontinuities or singularities within the interval of integration. 

Type 2 improper integrals arise when the function being integrated is undefined 

or unbounded within the interval of integration. Mathematically, a Type 2 improper 

integral is defined as: 

                        ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

Where either the function 𝑓(𝑥) is unbounded or undefined at some point within the 

interval [𝑎, 𝑏]. To evaluate a Type 2 improper integral, we identify the points of 

discontinuity or where the function becomes unbounded within the interval, and then 

we split the integral at those points. Then we compute the limit as those points 

approach each other. 

 

Example: 

         ∫
1

√𝑥
𝑑𝑥

1

0
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      Here, the function 
1

√𝑥
 is undefined at 𝑥 = 0 within the interval [0,1]. To evaluate 

this integral, we rewrite it as a limit: 

               lim
𝑎→0+

∫
1

√𝑥
𝑑𝑥

1

𝑎
  

Then, we integrate the function from a small positive value a to 1, and take the limit as 

a approaches 0 from the right side. In this case, the integral converges to 2. 

                       

CONVERGENCE OR DIVERGENCE OF 

TYPE I IMPROPER INTEGRALS 

Let 𝑓(𝑥) be an integrable and bounded function in a finite interval given by 𝑎 ≤

𝑥 ≤b.  Then define  

                               ∫ 𝑓(𝑥)𝑑𝑥 =
∞

𝑎
 lim
𝑛→∞

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. 

The integral on the left is convergent or divergent based on whether the limit on the 

right exists or not. 

 Similarly, we define 

  ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

−∞
lim

𝑎→−∞
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 

The integral is convergent or divergent based on whether the limit on the right exists or 

not. 

So, we have 
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  ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
 =    ∫ 𝑓(𝑥)𝑑𝑥

𝑐

−∞
+ ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑐
 

where 𝑐 is any real number. 

Here, ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
 is convergent if both the integrals on the right side ∫ 𝑓(𝑥)𝑑𝑥

𝑐

−∞
 and 

∫ 𝑓(𝑥)𝑑𝑥
∞

𝑐
 exists and, ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞
 is divergent otherwise. 

EXAMPLE 1: 

Test for the convergence of  ∫
1

3𝑥2
𝑑𝑥

∞

1
. 

     ∫
1

3𝑥2
𝑑𝑥

∞

1
 = lim

𝑏→∞
∫

1

3𝑥2
𝑑𝑥

𝑏

1  = lim
𝑏→∞

[−
1

3𝑥
]

1

𝑏

 = 
1

3
 [−

1

𝑏
− (1)] 

                                     = 
1

3
lim (
𝑏→∞

1 −
1

𝑏
 ) = 

1

3
. 

Therefore, ∫
1

3𝑥2
𝑑𝑥

∞

1
 converges. 

CONVERGENCE OR DIVERGENCE OF 

TYPE II IMPROPER INTEGRALS 

If the function 𝑓(𝑥) is unbounded only at the end point 𝑥 = 𝑎 of the interval 𝑎 ≤  𝑥 ≤  𝑏, then 

we define 

                            ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=  lim

𝑚→0+
∫ 𝑓(𝑥)𝑑𝑥.

𝑏

𝑎+𝑚
 

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is convergent if the limit on the right exists and is divergent otherwise  

If the function 𝑓(𝑥) is unbounded only at 𝑥 = 𝑏 of the interval 𝑎 ≤  𝑥 ≤  𝑏, then we can define  



7 
 

                            ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=  lim

𝑚→0+
∫ 𝑓(𝑥)𝑑𝑥.

𝑏−𝑚

𝑎
 

The integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  is convergent if the limit on right exists and is divergent otherwise. 

If the function 𝑓(𝑥) is unbounded at an arbitrary point say 𝑐 of the interval 𝑎 ≤  𝑥 ≤  𝑏, then 

we can define  

    ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = lim

𝑚1→0+
∫ 𝑓(𝑥)𝑑𝑥

𝑐−𝑚1

𝑎
  + lim

𝑚2→0+
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐+𝑚2
 

The integral on the right converges or diverges based on whether the limit on the right exists 

or not respectively. 

Similar process is carried out if the function is unbounded at more than one point in the given 

interval. 

EXAMPLE:  Test the convergence, ∫
1

𝑥2
𝑑𝑥

1

0
. 

The function in this case is unbounded at 𝑥 = 0. Therefore, 

   ∫
1

𝑥2
𝑑𝑥

1

0
 = lim

𝑚→0+
 ∫

1

𝑥2
𝑑𝑥

1

𝑚
 = lim

𝑚→0+
[−

1

𝑥
]

𝑚

1
 

                    =  lim
𝑚→0

(
1

𝑚
− 1) =  ∞ 

Therefore, the function is divergent. 

CONVERGENCE TESTS FOR 

TYPE I IMPROPER INTEGRALS. 
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Convergence tests for improper integrals of the first kind, which have infinite limits of 

integration, are essential in determining whether such integrals converge or diverge. Here are 

some common convergence tests used specifically for improper integrals of the first kind:   

 

1. Comparison Test: 

If  0 ≤  𝑓(𝑥)  ≤  𝑔(𝑥) for 𝑥 ≥  𝑎 (or 𝑥 ≤  𝑎 for an integer with 𝑎 = −∞), where 𝑔(𝑥) is 

an integrable function, then: 

 if ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 converges, then ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎
 converges. 

 If ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 diverges, then ∫ 𝑔(𝑥)𝑑𝑥

∞

𝑎
 diverges. 

  Example: 

 Test for convergence ∫
𝒔𝒊𝒏𝒙

√𝒙

𝟏

𝟎
dx  

 =>   We know that |
𝒔𝒊𝒏𝒙

√𝒙
| ≤ 

1

√𝑥
 

  since  ∫
𝟏

√𝒙

𝟏

𝟎
 𝑑𝑥 is convergent.  

   ∫
𝒔𝒊𝒏𝒙

√𝒙

𝟏

𝟎
𝑑𝑥 is convergent.  [ by comparison test] 

 2. Quotient test: 

       Suppose 𝑓(𝑥)  ≥  0 and 𝑔(𝑥)  >  0 for all 𝑥 ≥  𝑎 (or 𝑥 ≤  𝑎 for an integral with 𝑎 =

−∞) and let       

        lim
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
= 𝐿  then, 
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 If 𝐿 is a non-zero finite number i.e., if 𝐿 ≠  0 or ∞, then ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 converge or 

diverge together.  

 If 𝐿 =  0 and ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 converges, then ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎
 converges.  

 If 𝐿 =  ∞ and ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 diverges, then ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎
 diverges. 

 

CONVERGENCE TESTS FOR 

TYPE II IMPROPER INTEGRALS. 

  Considering the case where the function 𝑓(𝑥) is unbounded only at 𝑥 = 𝑎 in the interval 𝑎 ≤

 𝑥 ≤  𝑏. Similar tests are available where 𝑓(𝑥) is unbounded at 𝑥 = 𝑏 and 𝑥 =  𝑥0, in the 

interval 𝑎 <  𝑥0 <  𝑏. 

1. Comparison Test.  

      Let 𝑓 and 𝑔 be two positive functions which are unbounded at 𝑥 = 𝑎 and such that 𝑓(𝑥)  ≤

 𝑔(𝑥) where 𝑎 ≤  𝑥 ≤  𝑏, then, 

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 converges, if ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 converges. 

 ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 diverges, if ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 converges. 

2. Quotient Test. 

   If 𝑓(𝑥)  ≥  0 and 𝑔(𝑥)  ≥  0 for 𝑎 ≤  𝑥 ≤  𝑏 if  lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝐿 , then 

 If 𝐿 ≠  0 or ∞, that is, if l is a non-zero finite number, then  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 and ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 

converge or diverge together. 

 If 𝐿 =  0 and ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 converges, then ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 converges.  
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 If 𝐿 =  ∞ and ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 diverges, then ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 diverges.  

 

 

Example: 

              ∫
𝟏

𝒙𝟑(𝟏+𝒙𝟐)

𝟏

𝟎
dx  

We know that 𝑓(𝑥) = 
𝟏

𝒙𝟑(𝟏+𝒙𝟐)
 is not bounded at 𝑥 = 0 

Therefore, consider the function which is divergent  𝑔(𝑥) =
1

𝒙𝟑   

then lim
𝑥→0

𝑓(𝑥)

𝑔(𝑥)
=   lim

𝑥→0
 

𝒙𝟑

𝒙𝟑(𝟏+𝒙𝟐)
= lim

𝑥→0

1

(1+𝑥2)
= 1 

we know that ∫
𝟏

𝒙𝟑 
𝟏

𝟎
dx is divergent.  

Hence ∫
𝟏

𝒙𝟑(𝟏+𝒙𝟐)

𝟏

𝟎
dx is also divergent. 
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CHAPTER 2 

 

BETA  FUNCTION 

 

The beta function, represented by the notation β(m,n), is a unique function in mathematics that 

is defined for positive real integers m and n. It is widely utilized in probability theory, 

integration theory, and many other areas of physics, especially quantum and statistical 

mechanics. The definition of the beta function is: 

β(m,n) =    ∫ 𝑦𝑚−1(1 − 𝑦)𝑛−11

0
𝑑𝑦 

Additionally, it is connected to the gamma function by: 

β(m, n) = 
Γ(𝑚)∙Γ(𝑛)

Γ(𝑚+𝑛)
 

 

CONVERGENCE OF BETA FUNCTION 

If 𝑚 ≥ 1 and 𝑛 ≥ 1, 𝛽 (𝑚, 𝑛) is a proper integral. 

If 0 < 𝑚 < 1 or 0 < 𝑛 < 1, 𝛽 (𝑚, 𝑛) is an improper integral of second kind.  

So   ∫ 𝑦𝑚−1(1 − 𝑦)𝑛−11 

 0
𝑑𝑦  =   ∫ 𝑦𝑚−1(1 − 𝑦)𝑛−1 

1

2
 0

𝑑𝑦 +    ∫ 𝑦𝑚−1(1 − 𝑦)𝑛−11
1

2

𝑑𝑦 

                           =  𝐴 +  𝐵 

where 

𝐴 =  ∫ 𝑦𝑚−1(1 − 𝑦)𝑛−1 
1

2
 0

𝑑𝑦 and  

𝐵 = ∫ 𝑦𝑚−1(1 − 𝑦)𝑛−11

 
1

2

𝑑𝑦 

 

Convergence of A 

Let 𝑓(𝑦)  = 
(1−𝑦)𝑛−1

𝑦1−𝑚  and  

let 𝑔(𝑦)  =
1

𝑦1−𝑚 
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Then, 
𝑓(𝑦)

𝑔(𝑦)
= (1 − 𝑦)𝑛−1  

Taking limit on both sides,  

lim
𝑦⟶0

𝑓(𝑦)

𝑔(𝑦)
= lim

𝑦⟶0
(1 − 𝑦)𝑛−1 = 1 

Since ∫
1

𝑦1−𝑚 𝑑𝑦
1

2
0

  converges,  

So by quotient test, 

∫ 𝑦𝑚−1(1 − 𝑦)𝑛−1
1

2
0

𝑑𝑦  converges. 

 

Convergence of B  

Let 𝑓(𝑦)  =
𝑦𝑚−1

(1−𝑦)1−𝑛 and  

let 𝑔(𝑦)  =
1

(1−𝑦)1−𝑛 

Then, 
𝑓(𝑦)

𝑔(𝑦)
= 𝑦𝑚−1 

Taking limit on both sides,  

lim
𝑦⟶1

𝑓(𝑦)

𝑔(𝑦)
= lim

𝑦⟶1
𝑦𝑚−1 = 1 

Since ∫
1

(1−𝑦)1−𝑛 𝑑𝑦
1

1

2

  converges  

So by quotient test, 

∫ 𝑦𝑚−1(1 − 𝑦)𝑛−11
1

2

𝑑𝑦  converges. 

Therefore,  

∫ 𝑦𝑚−1(1 − 𝑦)𝑛−11

0
𝑑𝑦  converges. 

  

KEY PROPERTIES OF BETA FUNCTIONS 

 

1. Symmetric property  

         β(m, n) = β(n, m)  

We know that, 
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𝛽(𝑚, 𝑛)  =   ∫ 𝑦𝑚−1(1 − 𝑦)𝑛−11 

0 
𝑑𝑦                               ----(1) 

Put  1 − 𝑦 = 𝑥  

Then, −𝑑𝑦 = 𝑑𝑥 

𝑦:  0 ⟶ 1  

𝑥:  1 ⟶ 0  

∴  𝛽(𝑚,  𝑛) =   ∫ (1 − 𝑥)𝑚−1
0 

1 

𝑥𝑛−1(−𝑑𝑥) 

                     = −  ∫ (1 − 𝑥)𝑚−10 

1 
𝑥𝑛−1𝑑𝑥 

[∵   − ∫ 𝑓(𝑥)
𝑏 

𝑎 

 𝑑𝑥 =   ∫ 𝑓(𝑥)
𝑎 

𝑏 

 𝑑𝑥] 

Then, 𝛽(𝑚,  𝑛) =   ∫ (1 − 𝑥)𝑚−1 1

 0
𝑥𝑛−1𝑑𝑥 

                               =  ∫ (1 − 𝑦)𝑚−11

0
𝑦𝑛−1𝑑𝑦 

                               = 𝛽(𝑛, 𝑚) 

∴ 𝛽(𝑚, 𝑛) = 𝛽(𝑛, 𝑚) 

2. 𝜷(𝒎, 𝒏) =  𝟐 ∫ 𝒔𝒊𝒏𝟐𝒎−𝟏
𝝅

𝟐
𝟎

𝜽𝒄𝒐𝒔𝟐𝒏−𝟏𝜽 𝒅𝜽 

we know that,  

𝛽(𝑚, 𝑛) = ∫ 𝑥𝑚−11

0
(1 − 𝑥)𝑛−1𝑑𝑥 -----------(1) 

Put, 𝑥 = 𝑠𝑖𝑛2𝜃,     1 − 𝑥 = 𝑐𝑜𝑠2𝜃 

d𝑥 =  2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑑𝜃 

𝑥: 0→ 1 

𝜃:0→
𝜋

2
 

Equation (1) becomes,  

𝛽(𝑚, 𝑛) =  ∫ 𝑠𝑖𝑛2𝜃𝑚−1𝑐𝑜𝑠2𝜃𝑛−1

𝜋
2

0

2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑑𝜃 
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              = 2 ∫ 𝑠𝑖𝑛2𝑚−1

𝜋
2

0

𝜃𝑐𝑜𝑠2𝑛−1𝜃 𝑑𝜃 

3. If m and n are positive integers,  

Then, β (m, n) = 
(𝒎−𝟏)!(𝒏−𝟏)!

(𝒎+𝒏−𝟏)!
 

             𝛽 (𝑚, 𝑛)  =  ∫ 𝑥𝑚−1
1

0

(1 − 𝑥)𝑛−1𝑑𝑥 

                              =  [(1 − 𝑥)𝑛−1
𝑥𝑚

𝑚
]
1
0

+ ∫ (𝑛 − 1)
1

0

(1 − 𝑥)𝑛−2
𝑥𝑚

𝑚
𝑑𝑥 

                               =
𝑛 − 1

𝑚
∫ 𝑥𝑚

1

0

(1 − 𝑥)𝑛−2𝑑𝑥  

                                =
𝑛 − 1

𝑚
𝛽(𝑚 + 1, 𝑛 − 1) 

                                =
𝑛 − 1

𝑚
∙

𝑛 − 2

(𝑚 + 1)
𝛽(𝑚 + 2, 𝑛 − 2) 

                               

=
𝑛 − 1

𝑚
∙

𝑛 − 2

𝑚 + 1
∙

𝑛 − 3

𝑚 + 2
∙∙∙

1

𝑚 + 𝑛 − 2
𝛽(𝑚 + 𝑛 − 1, 1)      − − − (𝑎) 

 

Also,                    𝛽 (𝑚 + 𝑛 − 1, 1) =  ∫ 𝑥𝑚+𝑛−2(1 − 𝑥)01

0
𝑑𝑥 

= ∫ 𝑥𝑚+𝑛−2
1

0

𝑑𝑥 

= [
𝑥𝑚+𝑛−1

𝑚 + 𝑛 − 1
]

0

1

 

         =
1

𝑚 + 𝑛 − 1
 

Equation (𝑎)  becomes,  

                 𝛽  (𝑚, 𝑛) =
(𝑛 − 1)(𝑛 − 2) … 1

𝑚(𝑚 + 1) … (𝑚 + 𝑛 − 1)
 

                                      =
(𝑛−1)!(𝑚−1)!

(𝑚+𝑛−1)!
 

    ∴ 𝛽(𝑚, 𝑛) =  
(𝑚−1)!(𝑛−1)!

(𝑚+𝑛−1)!
 

 

Note:  
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                 In the above case, we also have,  

𝛽 (𝑚, 𝑛)   =  2 
(2𝑚 − 2)(2𝑚 − 4) … 2

(2𝑚 + 2𝑛 − 2)(2𝑚 + 2𝑛 − 4) … (2𝑛 + 2)

1

2𝑛
  

                    =
(𝑚 − 1)!

(𝑚 + 𝑛 − 1)(𝑚 + 𝑛 − 2) … (𝑛 + 2)

1

𝑛
 

                    =   
(𝑚 − 1)! (𝑛 − 1)!

(𝑚 + 𝑛 − 1)!
 

Example:   

(1). Express 𝑓(𝑥)  =  𝑥𝑚(1 − 𝑥𝑝)𝑛 from 0 → 1 in terms of beta function  

   Let 𝑧 =  𝑥𝑝 

   Differentiating this in terms of 𝑥,  we get,  

   𝑝𝑥𝑝−1𝑑𝑥 = 𝑑𝑧  

   𝑑𝑥 =  
1

𝑝

𝑑𝑧

𝑧 
𝑝−1

𝑝

 

  𝑋: 0 → 1  

   𝑍: 0 → 1 

∫ 𝑥𝑚1

0
(1 − 𝑥𝑝)𝑛

𝑑𝑥  = ∫ 𝑧 
𝑚

𝑝
1

0
(1 − 𝑧)𝑛 1

𝑝

𝑑𝑧

𝑧 
𝑝−1

𝑝

  

                                        = 
1

𝑝
∫ 𝑧 

𝑚+1

𝑝
−11

0
(1 − 𝑧)𝑛𝑑𝑧  

                                       =
1

𝑝
𝛽(

𝑚+1

𝑝
, 𝑛 + 1)  

Which is the required form. 

 (2). ∫ 𝑥51

0
(1 − 𝑥3)3

𝑑𝑥 =  
1

3
𝛽 (

6

3
, 4) 

                                           = 
1

3 
𝛽(2,4) 

                                          = 
1!3!

5!∙3
 

                                          = 
1

60
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 (3). ∫ 𝑥𝑚(1 − 𝑥2)𝑛𝑑𝑥 =  
1

2

1

0
𝛽(

𝑚+1

2
, 𝑛 + 1) 

 (4). ∫
𝑥2

√(1−𝑥5)

1

0
 dx = ∫ 𝑥21

0
(1 − 𝑥5)

−1

2  dx  

                              =  
1

5
𝛽(

3

5
,

1

2
) 
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 CHAPTER  3 
 

GAMMA FUNCTION 

A mathematical function known as the gamma function, or Γ(𝑝) extend the factorial function 

to complex number with the exception of negative integers, for which it is undefined. The 

integral is used to express it: 

   Γ(𝑝) = ∫ 𝑒−𝑥 ∞

0
𝑥  𝑝−1 𝑑𝑥  

Applications of this function can be found in many disciplines, such as engineering, physics, 

and mathematics. When dealing with issues requiring combinations, permutations, and 

continuous distributions, it is especially helpful. 

 

                          CONVERGENCE OF GAMMA FUNCTION 

      If 𝑝 ≥  1, the gamma function Γ(𝑝) = ∫ 𝑒−𝑥 ∞

0
𝑥  𝑝−1 𝑑𝑥  is an improper integral of first 

kind and if 𝑝 < 1, it is improper integral of third kind.  

     Γ(𝑝) = ∫ 𝑒−𝑥 ∞

0
𝑥  𝑝−1 𝑑𝑥  

             =∫ 𝑒−𝑥 1

0
𝑥  𝑝−1 𝑑𝑥  + ∫ 𝑒−𝑥 ∞

1
𝑥  𝑝−1 𝑑𝑥  

            =  𝐶 +  𝐷 

where,  

𝐶 =  ∫ 𝑒−𝑥 
1

0

𝑥  𝑝−1 𝑑𝑥  

𝐷 =  ∫ 𝑒−𝑥
∞

1

 𝑥 𝑝−1𝑑𝑥 

Case (a): p ≥ 1 

 Here C is proper integral, and D is an improper integral of first kind.  

Let   𝑓(𝑥) = 𝑒−𝑥𝑥 𝑝−1 and 𝑔(𝑥)  =
1

𝑥2 

lim
𝑥⟶∞

𝑓(𝑥)

𝑔(𝑥)
 = lim

𝑥⟶∞
𝑥 𝑝+1𝑒−𝑥   = 0 
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Since,  

          ∫
1

𝑥2 𝑑𝑥
∞

1
  converges, then by applying Quotient test, we get  

        ∫ 𝑒−𝑥∞

1
 𝑥 𝑝−1𝑑𝑥 is convergent.  

That is, 𝐷 is convergent.  

Here 𝐶 +  𝐷 is convergent.  

∴  Γ(𝑝) is convergent. 

 

Case (b): 𝑝 <  1 

Here 𝐶 is an improper integral of second kind and 𝐷 is an improper integral of first kind. 

Let 𝑓(𝑥) = 𝑒−𝑥 𝑥 𝑝−1  and let 𝑔(𝑥) =
1

𝑥1−𝑝 

lim
𝑥⟶0+

𝑓(𝑥) 

𝑔(𝑥)
 = lim

𝑥⟶0+
𝑒−𝑥  = 1 

Since,  

  ∫
1

𝑥1−𝑝 𝑑𝑥
1

0
  converges then 1 − 𝑝 <  1(𝑝 > 0). 

  Then by applying Quotient test, we get, 

 ∫ 𝑥  𝑝−11

0
𝑒−𝑥  𝑑𝑥  =  𝐶, Converges when 𝑝 >  0. 

Similar to case (𝑎) we get that, 

𝐷 =  ∫ 𝑒−𝑥∞

1
𝑥 𝑝−1 𝑑𝑥 converges for 𝑝 < 1 

That is, 𝐶 +  𝐷 converges when 0 <  𝑝 <  1.  

  ∴  Γ(𝑝) converges when 0 <  𝑝 <  1. 

From case (𝑎) and case (𝑏), we get that  

  Γ(𝑝) = ∫ 𝑒−𝑥 ∞

0
𝑥  𝑝−1 𝑑𝑥  converges for all 𝑝 >  0. 
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RECURRENCE FORMULA FOR GAMMA FUNCTION 

      Γ(𝑝) = (𝑝 − 1)Γ(𝑝 − 1) 

Γ(𝑝) = ∫ 𝑒−𝑥 
∞

0

𝑥 𝑝−1 𝑑𝑥  

        =[𝑥 𝑝−1 𝑒−𝑥

−1
]

0

∞

+ ∫ (𝑝 − 1)𝑥 𝑝−2∞

0
 𝑒−𝑥  𝑑𝑥  

        =(𝑝 − 1) ∫ 𝑥
∞

0
 𝑝−2𝑒−𝑥 𝑑𝑥  

       =(𝑝 − 1)Γ(𝑝 − 1) 

     ∴  Γ(𝑝) = (𝑝 − 1)Γ(𝑝 − 1) 

Which is the required recurrence formula for gamma function.  

 

Note:  

If p is positive integer, 

 Γ(𝑝) = (𝑝 − 1)Γ(𝑝 − 1)  

 Γ(𝑝) = (𝑝 − 1)(𝑝 − 2)Γ(p − 2) 

 Γ(𝑝) = (𝑝 − 1)(p − 2) … Γ(1)    ----- (1) 

Where, 

    Γ(1) =   ∫ 𝑒−𝑥∞

0
 𝑑𝑥  

          =[
𝑒−𝑥

−1
 ]

0

∞

 

          = 1 

Then equation (1) becomes,  

     Γ(𝑝) = (𝑝 − 1)(𝑝 − 2) … 1 

               =(𝑝 − 1)! 

∴  Γ(𝑝) = (𝑝 − 1)! 
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RELATION BETWEEN BETA FUNCTION AND GAMMA FUNCTION 

𝛽(𝑚,  𝑛) =
Γ(𝑚)Γ(𝑛)

Γ(𝑚  + 𝑛)
 

Proof: 

We have, 𝛽(𝑚,  𝑛) = ∫ 𝑥  𝑚−1(1 − 𝑥) 𝑛−11

0
𝑑𝑥 

                                   = 2 ∫ 𝑠𝑖𝑛
𝜋

2
0

 2𝑚−1𝜃 cos2𝑛−1 𝜃  𝑑𝜃 ---- (1) 

Also, Γ(𝑛) = ∫ 𝑒
∞

0
 −𝑥  𝑥 𝑛−1 𝑑𝑥 

Put,      𝑥 = 𝑡2  

then, 𝑑𝑥  =  2𝑡 𝑑𝑡   

 𝑥 : 0 → ∞  

 𝑡 : 0 → ∞  

          Γ(𝑛) = ∫ 𝑒−𝑡2∞

0
𝑡2𝑛−2 2𝑡 𝑑𝑡  

                  = 2 ∫ 𝑒−𝑡2∞

0
𝑡2𝑛−1  𝑑𝑡  ----- (2) 

Γ(𝑚)Γ(𝑛) = 2 ∫ 𝑒−𝑥2∞

0
𝑥 2𝑚−1𝑑𝑥  ∙  2 ∫ 𝑒−𝑦2∞

0
𝑦  2𝑛−1𝑑𝑦  

                 = 4 ∫ ∫ 𝑒
∞

0

∞

0
 −𝑥2

𝑥 2𝑚−1𝑒 −𝑦2
𝑦  2𝑛−1 𝑑𝑥 𝑑𝑦 

                = 4 ∫ ∫ 𝑒
∞

0

∞

0
 −(𝑥2+𝑦2)𝑥 2𝑚−1𝑦  2𝑛−1 𝑑𝑥 𝑑𝑦 

Converting into polar form,  

𝑥  =  𝑟  𝑐𝑜𝑠𝜃 , 𝑦  =  𝑟  sin 𝜃   

𝑑𝑥𝑑𝑦 = 𝑟 𝑑𝑟 𝑑𝜃  

𝑟 : 0 → ∞  

𝜃 : 0 →
𝜋

2
 

 

= 4 ∫ ∫  𝑒 −𝑟2
∞

0

𝜋
2

0

𝑟  2𝑚−1(𝑐𝑜𝑠𝜃)2𝑚−1𝑟 2𝑛−1(𝑠𝑖𝑛𝜃)2𝑛−1𝑟 𝑑𝑟 𝑑𝜃 
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= 4 ∫ ∫  𝑒 −𝑟2
𝑟2(𝑚+𝑛)−1 cos2𝑚−1 𝜃 sin2𝑛−1 𝜃

∞

0

𝜋
2

0

 𝑑𝑟𝑑𝜃 

= 4 (∫ 𝑒−𝑟2
∞

0

𝑟2(𝑚+𝑛)−1𝑑𝑟)   ∫ cos2𝑚−1 𝜃

𝜋
2

0

sin2𝑛−1 𝜃  𝑑𝜃 

 = (2 ∫ 𝑒−𝑟2∞

0
𝑟2(𝑚+𝑛)−1𝑑𝑟) ( 2 ∫ cos2𝑚−1 𝜃

𝜋

2
0

sin2𝑛−1 𝜃 𝑑𝜃)          

   From (1) and (2)  

Γ(𝑚)Γ(𝑛) = Γ(𝑚 + 𝑛)𝛽(𝑚, 𝑛) 

∴ 𝛽(𝑚, 𝑛) =
Γ(𝑚)Γ(𝑛)

Γ(𝑚 + 𝑛)
 

Hence the proof.  

 

∗ Prove that Γ (
1

2
) = √𝜋  

Proof: 

    𝛽(𝑚, 𝑛) =
Γ(𝑚)Γ(𝑛)

Γ(𝑚+𝑛)
  

    Put,  𝑚 = 𝑛 =
1

2
 

 We get,  

     Γ (
1

2
) Γ (

1

2
) = 𝛽 (

1

2
,

1

2
) 

     Γ (
1

2
)

2

= 𝛽 (
1

2
,

1

2
) 

                   = 2 ∫ sin 1−1 𝜃
𝜋

2
0

𝑐𝑜𝑠 1−1𝜃 𝑑𝜃 

                   = 2 ∫ 𝑑𝜃
𝜋

2
0

 

                  = 𝜋  

         ∴  Γ (
1

2
) = √𝜋  

           Hence the proof.  
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DUPLICATION FORMULA 

Γ(𝑚)Γ (𝑚 +
1

2
) =

√𝜋

22𝑚−1
Γ(2𝑚) 

Proof:  

 We have, 

           𝛽(𝑚, 𝑛) = 2 ∫ sin2𝑚−1  𝜃
𝜋

2
0

  cos2𝑛−1 𝜃  𝑑𝜃 

  Put 𝑚 = 𝑛 , 

  𝛽(𝑚, 𝑚) = 2 ∫ sin2𝑚−1 𝜃 
𝜋

2
0

cos2𝑚−1 𝜃  𝑑𝜃 

               = 2 ∫ (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃)2𝑚−1
𝜋

2
0

 𝑑𝜃 

              = 2 ∫ (
sin 2𝜃

2
)

2𝑚−1𝜋

2
0

𝑑𝜃  

             =
1

22𝑚−2 ∫ sin2𝑚−1 2𝜃
𝜋

2
0

 𝑑𝜃 

Put 2𝜃  = 𝑡  

2𝑑𝜃  = 𝑑𝑡  

𝜃 : 0 ⟶
𝜋

2
 

𝑡 : 0 ⟶ 𝜋 

          =
1

22𝑚−2 ∫ sin2𝑚−1 𝑡
𝜋

0
 

𝑑𝑡

2
  

          =
1

22𝑚−1  ∫ sin2𝑚−1 𝑡
𝜋

0
 𝑑𝑡          

         =
1

22𝑚−1 2 ∫ sin2𝑚−1 𝑡
𝜋

2
0

 𝑑𝑡            [ If 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥) then, ∫ 𝑓(𝑥)
2𝑎

0
= 2 ∫ 𝑓(𝑥)

𝑎

0
]  

         =
1

22𝑚−1 2 ∫ sin2𝑚−1 𝑡
𝜋

2
0

  cos0 𝑡 𝑑𝑡 

         𝛽(𝑚, 𝑚) =
1

22𝑚−1 𝛽 (𝑚,  
1

2
) 
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Γ(𝑚)Γ(𝑚)

Γ(2𝑚)
=

1

22𝑚−1

Γ(𝑚)Γ (
1
2)

Γ (𝑚 +
1
2)

 

Γ(𝑚)Γ (𝑚 +
1

2
) =

√𝜋

22𝑚−1
Γ(2𝑚) 

Hence the proof. 
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CHAPTER 4 

APPLICATIONS  

 

Improper Integrals  

   Applications for improper integrals can be found in many fields of mathematics, science, 

and engineering. These include integrals across unbounded intervals and integrands with 

infinite discontinuities. Inappropriate integrals are frequently utilised in the following 

important domains: 

1. Physics: 

 Calculation of physical quantities such as work, energy, electric field, and 

gravitational force. 

 Modeling phenomena in classical mechanics, electromagnetism, thermodynamics, and 

quantum mechanics. 

 Evaluating wave functions and probability amplitudes in quantum mechanics. 

2. Engineering: 

 Analysis of signals and systems in electrical engineering, particularly in Fourier 

analysis and signal processing. 

 Calculation of moments of inertia and center of mass in mechanical engineering. 

 Design and analysis of control systems in control engineering. 

 Solution of differential equations describing physical systems. 

3. Statistics and Probability: 

 Calculation of probability distributions and expected values in probability theory. 

 Estimation of parameters in statistical inference and hypothesis testing. 

 Modeling of random processes and stochastic systems. 

4. Finance and Economics: 

 Valuation of financial derivatives and options using stochastic calculus. 

 Calculation of expected returns and risk measures in portfolio management. 

 Modeling of economic variables and forecasting future trends. 

5. Computer Science: 

 Integration techniques are used in numerical methods for solving differential 

equations and optimization problems. 
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 Evaluation of complex algorithms involving probability distributions and statistical 

analysis. 

 Development of machine learning algorithms for pattern recognition and data 

analysis. 

6. Geosciences and Environmental Science: 

 Analysis of spatial and temporal variations in environmental data. 

 Modeling of fluid flow, heat transfer, and chemical transport in Earth systems. 

 Evaluation of seismic signals and interpretation of geophysical data. 

  Overall, improper integrals provide powerful mathematical tools for analyzing real-

world phenomena, modeling complex systems, and making predictions in different fields of 

study. Their applications are broad and interdisciplinary, making them indispensable in both 

theoretical and practical aspects. 

Beta Function: 

         Another significant special function in mathematics with a wide range of applications is 

the beta function, represented by the symbol B(x,y). Here are a few noteworthy uses: 

1. Probability and Statistics: 

 The beta distribution, which is derived from the beta function, is widely used in 

Bayesian statistics to model random variables with values between 0 and 1. It's 

particularly useful in modeling proportions, rates, and probabilities. 

 The beta function is used in defining the beta distribution's probability density function 

(PDF) and cumulative distribution function (CDF), which are essential for statistical 

inference and hypothesis testing. 

2. Integral Calculus: 

 The beta function arises naturally in evaluating certain types of definite integrals, 

particularly those involving trigonometric functions and powers of sine and cosine. 

 It is employed in evaluating multivariate integrals, especially in polar, cylindrical, and 

spherical coordinate systems. 

3. Engineering and Physics: 
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 In physics, the beta function appears in the context of nuclear decay processes, such as 

beta decay, where it describes the probability distribution of the energy of emitted beta 

particles. 

 It is used in fluid dynamics to calculate various fluid flow properties, such as the 

velocity profile in laminar flow between parallel plates. 

 In control theory and system dynamics, the beta function is utilized in modeling transfer 

functions and analyzing stability criteria for dynamic systems. 

4. Finance and Economics: 

 The beta function finds applications in finance for modeling asset pricing models, such 

as the Capital Asset Pricing Model (CAPM), where it represents the covariance between 

an asset's returns and the market's returns. 

 It is used in risk management to quantify the relationship between the risk of an 

individual asset or portfolio and the overall market risk. 

5. Machine Learning and Data Analysis: 

 The beta distribution, derived from the beta function, is used in Bayesian inference for 

modeling prior and posterior distributions of parameters in machine learning 

algorithms. 

 It is employed in modeling the probability of success in binary classification tasks and 

estimating parameters in logistic regression models. 

6. Chemistry and Biology: 

 In chemistry, the beta function is used in calculating the molecular partition functions 

and in describing the distribution of molecular energies. 

 In biology, it can be used in modeling population growth rates and in the analysis of 

genetic data, particularly in Bayesian estimation of allele frequencies. 

 

Gamma Function: 

          The gamma function, denoted by Γ(z), has numerous applications across mathematics, 

science, and engineering. Some key applications include: 

1. Combinatorics and Probability: 
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 The gamma function is deeply connected to combinatorial analysis, particularly in 

counting permutations and combinations. It appears in formulas for binomial 

coefficients and multinomial coefficients. 

 In probability theory, the gamma function is used to define the gamma distribution, 

which models the time until an event occurs in processes such as radioactive decay 

and queueing systems. 

2. Analysis and Integral Calculus: 

 The gamma function generalizes the factorial function to real and complex numbers 

(except negative integers). It is used extensively in evaluating integrals, especially 

those involving powers of trigonometric functions, exponential functions, and 

polynomials. 

 It appears in various integral transforms, such as the Laplace transform, Mellin 

transform, and Fourier-Bessel transform. 

3. Number Theory: 

 The gamma function is involved in the study of special values of certain Dirichlet 

series and Euler products. 

 It appears in formulas related to the Riemann zeta function, including the functional 

equation of the zeta function and its analytic continuation. 

4. Physics and Engineering: 

 In physics, the gamma function arises in quantum mechanics, particularly in 

calculating probabilities and amplitudes of quantum processes. 

 It is used in engineering disciplines, such as signal processing, control theory, and 

fluid dynamics, for solving differential equations and analyzing complex systems. 

5. Statistical Distributions: 

 The gamma function is used to define several important probability distributions, 

including the gamma distribution, chi-square distribution, and exponential 

distribution. 

 These distributions are widely used in statistical modeling and data analysis, for 

example, in reliability analysis, survival analysis, and queuing theory. 

6. Special Functions and Mathematical Identities: 
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 The gamma function is a fundamental building block for many other special 

functions, such as the beta function, hypergeometric function, and confluent 

hypergeometric function. 

 It appears in various mathematical identities and series representations, including 

Euler's reflection formula, Gauss's multiplication theorem, and Stirling's 

approximation for the factorial function. 
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CONCLUSION 

                           

 

The beta and gamma functions are incredibly important in mathematics, physics, 

engineering, and various other fields. In essence, the beta and gamma functions are 

powerful mathematical tools that provide solutions to a wide range of problems in 

various fields, making them indispensable in both theoretical analysis and 

practical applications. 
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