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INTRODUCTION

One of the best known labeling methods of graphs, graceful labeling
was introduced in 1967 by the mathematician Alexander Rosa. It was
firstly named as β labeling. Later, American mathematician Golumb
renamed it as graceful in 1972. Consider the graph G = (V,E) of m ver-
tices and n edges. Then the 1-1 mapping Ψ from vertex set V(G) into
the set {0, 1, 2, .., n} is called the graceful labeling of graph G. With
this, if we define, for any edge e = uv ∈ E(G), the value Ψ*(e) = |Ψ(u)
- Ψ(v)|. Then Ψ* is a one-to-one mapping of the set E(G) onto the set
{1, 2, ..., n}. If a graph has graceful labeling, it is said to be graceful[4].

Rosa established a parity criterion for the straightforward graph G
with n edges. He demonstrates that G is not graceful if every vertex has
an even degree and n ≡ 1, 2 (mod 4). Later Golumb confirmed it as a
necessary condition that, if G is graceful, even (simple) graphs with n
edges then necessarily [ (n+1)/2] ≡ 0 (mod 2) [12].

Although utmost graphs aren’t graceful, graphs that have some kind
of chronicity of structure are graceful. Numerous variations of graceful
labeling have been presented in recent times by experimenters. All cy-
cles Cn are graceful iff n ≡ 0 or 3 (mod 4). All paths Pn, wheels Wn and
complete bipartite graphs Kmn are graceful. The complete graphs Kn

are graceful iff n ≤ 4. It has been conjectured that all trees are graceful

6



and it is still an open problem.

It has wide range of application in other fields such as in coding theory,
communication networks, dental arch etc. Also more than 400 papers
have been published on the subject of graph labeling.The graceful label-
ing problem is to find out whether a graph is graceful. This project is
divided into 5 chapters.

In the Chapter 1, we deal with the basic definitions of graph theory.
The formal definition of graceful labeling of a graph, the gracefulness
of specific graph classes, and some general conclusions about graceful
labeling of graphs are presented in Chapter 2. In Chapter 3, we focus
on findings related to the Graceful Tree Conjecture and various meth-
ods to challenge the conjecture. In chapter 4, we discuss the variations
of graceful labeling. And in Chapter 5, we discuss the applications of
graceful graphs in various fields.
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CHAPTER 1

SOME BASIC CONCEPTS OF GRAPH
THEORY

Definition1.1: A graph is an ordered triple G = (V(G), E(G), Ig)
where V(G) is a non empty set, E(G) and V(G) are disjoint, and Ig is
an incidence relation that related to each element of E(G), an unordered
pair of elements (same or distinct ) of V(G). Elements of V(G) are called
the vertices of G and elements of E(G) are called the edges of G .V(G)
and E(G) are the vertex set and edge set of G independently. For the
edge e of G, Ig(e) ={u, v}, we write Ig(e) = uv [12].

Example 1.1: If V(G) = {v1, v2, v3}, E(G) = {e1, e2, e3, e4, e5} and
Ig is given by Ig(e1) = {v1, v2}, Ig(e2) = {v1, v2}, Ig(e3) = {v1, v3},
Ig(e4) = {v2, v3}, Ig(e5) = {v3, v3}, then ( V(G), E(G), Ig ) is a graph.

The diagrammatic representation of the graph is given below.

Figure 1.1
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Definition 1.2:The vertices u and v are known as the end vertices or
ends of the edge e if IG (e) = {u, v}. In this scenario, we say that e is
incident with each of its ends. Each edge is said to join its ends. Also
vertices u and v are incident with e. A collection of two or more graph
edges If they share the same pair of unique ends, then G is referred to
as a set of multiple or parallel edges. We write e = uv if e is an edge
with the end vertices u and v. A loop at the common vertex is the edge
whose two ends are identical. If uv is an edge of G then the vertex u is
a neighbor of v in G, u ̸= v. The open neighborhood of v, also known as
the neighbor set of v, is indicated by the set N(v), whereas the closed
neighborhood of v in G is denoted by the set N[v] = N(v) U v. These
open and closed neighborhoods of v are indicated by NG(v) and NG[v],
respectively, when G needs to be made explicit. If there is an edge of
G with u and v as its ends, then Vertices u and v are adjacent to each
other in G. Similarly two distinct edges e and f are said to be adjacent
if and only if they have a common end vertex. A graph having no loops
and parallel edges are called simple graph [1].

Example 1.2: In figure 1.1, edge e3 = v1v3, edges e1 and e2 are parallel
edges and e5 is a loop at v3; N(v3) = {v1, v2}, N[v3] = {v1, v2, v3}. Fur-
ther, v1 and v3 are adjacent vertices and e3 and e4 are adjacent edges.

Definition 1.3: A graph in which both V(G) and E(G) are finite is
called a finite graph and those which are not finite is called infinte graph.
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Definition 1.4: If all n vertices of graph G distinguished from one
another by labels v1, v2, ....., vn ,then G is a labelled graph [1].

Figure 1.2

Definition 1.5: If every pair of distinct vertices of a simple graph G
are adjacent in G, then the graph G is called the complete graph Kn.

Figure 1.3

Definition 1.6: A graph with its vertex set is a singleton and contain-
ing no edges is called atrivial graph.Also a graph in which the vertex set
can be divided into two non empty subsets X and Y whose each edges
has one end in X and other end in Y is called a bipartite graph and
the pair(X,Y) is called the bipartition of the bipartite graph denoted
by G(X,Y). Here if each vertex of X is adjacent to all the vertices of Y,
then G(X,Y) is said to be complete bipartite graph. A complete bipartite

10



graph G(X,Y) with |X|= P and |Y |= q is denoted by Kp,q [1].

Figure 1.4

Definition 1.7: A graph whose vertices can be divided into k distinct
sets, none of which contain adjacent vertices, is referred to as a k-partite
graph[1].

Figure 1.5

Definition 1.8: A k-partite graph is said to be complete if there is an
edge connecting each pair of vertices from several independent sets.
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Figure 1.6

Definition 1.9: Let H be a graph. If V(H) ⊆ V(G), E(H) ⊆ E(G) and
IH is the restriction of E(H), then graph H is called a subgraph of G.
Here G is called the supergraph of H. If either V(H) ̸= V(G) or E(H)
̸= E(G), then the subgraph H of graph G is a proper subgraph. If every
edge of G with ends in V(H) is also an edge of a subgraph H of G, then
the subgraph is said to be induced and if V(H) = V(G), then a subgraph
H of G is a spanning subgraph of G. If S ⊆ V(G), then the subgraph
induced by S of G is denoted by G[S] [1].

Definition 1.10: Let G be a graph and v ∈ V(G). The degree of v in
G is the number of edges incident at v in G and is denoted by dG(v) or
d(v). While finding the degree of v, a loop at v is counted twice. δ(G)
and ∆(G) denotes the minimum and maximum degrees of vertices of G
respectively. If every vertex of graph G has a degree k, then the graph
is said to be k-regular and a graph is called regular if it is k-regular for
some non-negative integer k [1].
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Definition 1.11: An isolated vertex of graph G is the vertex with de-
gree 0. Also pendant vertex is the vertex with degree 1 and pendant edge
is the edge that the pendant vertex makes with its adjacent vertex. De-
gree sequence of G is obtained when the degrees of the vertices of G are
noted as a sequence, where the vertices are taken in the same order[1].

Definition 1.12: An alternating sequence W: v0e1v1e2v2....epvp of ver-
tices and edges, begining and ending with vertices is called a walk in
graph G. Here the walk W is also referred as v0-vp walk. And a walk is
said to be closed if v0 = vp , otherwise it is an open walk. If all the edges
in the walk are distinct, then the walk is called a trail and it is called a
path if all the vertices are distinct. Thus a path is always a trail. But
the converse is not true. A closed trail in which in the vertices are all
distinct is called a cycle. The number of the edges in W is called the
length of W and d(u,v) denotes the length of the shortest u-v path in
G, which is the distance between the vertices u and v in G [1].

Example 1.3: In figure 1.7, v6e8v1e7v5e6v4e5v1e8v6 is a walk but not a
trail (since edge e8 is repeated). v6e9v5e6v4e5v1e1v2e2v3 is a trial which
is also a path and v1e8v6e9v5e6v4e5v1 is a cycle.
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Figure 1.7

Definition 1.13: A cycle of length k is denoted by Ck and a path on k
vertices is denoted by Pk. In particular, C3 is referred as triangle, C4 as
a square and C5 as a pentagon.

Definition 1.14: For two vertices u, v ∈ G, if there exist a u-v path
in G, then graph G is connected. Also it is an equivalence relation on
V(G). Let V1, V2, ......, Vw be the equivalence classes. Then the subgraphs
G[V1], G[V2],....,G[VW ] are called the components of G. Graph G is con-
nected, if w = 1 ; otherwise G is disconnected [1].

Definition 1.15: A spanning trail in a graph G that contain all the
edges of G is called an Euler trail and a closed euler trail in G is called
an Euler tour. If G has an euler tour, then G is called Eulerian [1].

Figure 1.8
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Definition 1.16: A connected graph without cycles is defined as a tree.
A forest is a graph with trees as its connected elements. A leaf is any
vertex of degree 1 in a tree [1].

Figure 1.9

Definition 1.17: Let G be a connected graph.

1. The diameter of G is defined as:
max{d(u, v)/u, v∈ V(G)}

is denoted by diam(G).

2. If v is a vertex of G, then its eccentricity e(v) is defined by:
e(v) = max{d(v, u)/u∈ V(G)}

3. The radius r(G) of G is the minimum eccentricity of G.
r(G) = min{e(v)/v∈ V(G)}

Also
diam(G) = max{e(v)/v∈ V(G)}

4. If e(v) = r(G), then the vertex v of G is called the central vertex of
G. The set of central vertices of G is called the center of G [1].
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CHAPTER 2

INTRODUCTION TO GRACEFUL
GRAPHS

Graph Labeling

Graph labeling, also known as valuation of a graph, is a map that assigns
values so that a property is satisfied. It can be given either to vertices or
edges or to both. If we give labels to the vertices of graph G , then it is
called vertex labeling and is called edge labeling if edges of G are labeled.
If both edges and vertices are labeled, then it is called total labeling.

Graceful Labeling

Definition: Consider the graph G with m vertices and n edges. Then
the 1-1 mapping Ψ from vertex set V(G) into the set {0, 1, 2, .., n} is
called the graceful labeling of graph G. With this, if we define, for
any edge e = uv ∈ E(G), the value Ψ*(e) = |Ψ(u) - Ψ(v)|. Then Ψ* is a
one-to-one mapping of the set E(G) onto the set {1, 2, ..., n}. If a graph
has graceful labeling, it is said to be graceful [12].

Although elegant labeling has been studied over 50 years, not many
general conclusions have been reached. Since it is sufficient to display a
graceful labeling for each graph in the class, the majority of the results

16



centered on demonstrating the gracefulness of a graph class. On the
other hand, results on a graph’s lack of grace rely mostly on a necessary
condition that is only true for Eulerian graphs or on attempts to name
the graph graciously until a contradiction, which is generally ineffective
[12].

Figure 2.1: Graceful labeling of P4 and K1,3

Theorem 2.1: The path graph Pm is graceful for all m≥1 [12].
Proof : Consider the path graph Pm. Let V(Pm) = {u0, u1, u2, ..., um−1}
be the vertex set of Pm such that uk−1uk ∈ E(Pm) and |E(Pm)| = m-1
edges. Label the vertices with integers from 0 to m-1 such that each
number between 1 and m-1 becomes an edge label. Initiate with edge
label m-1. It is possible to give an absolute difference m-1 only in one
way. i.e, putting a vertex with label 0 next to a vertex with label m-1.
For that, let’s label Ψ(u0) = 0 and Ψ(u1) = m-1. Now to get an edge
label m-2, there are only two ways. i.e. m-2 = | (m-2) - 0 | = | (m-1) - 1 |.

Since it is path graph, u0 has no more neighbouring vertices that are
not labeled. So we obtain the edge label m-2 by fixing Ψ(u2) = 1. Con-
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tinuing this, our final labeled path has labeling as follows:

Ψ(uk) =

{
k
2 ; if k is even

m− (k+1)
2 ; if k is odd

Next we show that Ψ is a graceful labeling of Pm. For that we’ve to
show that the edge label 1 occur on the last edge um−2um−1. Ψ(um−1)
= m/2 and Ψ(um−2) = (m-2)/2, if m is even. Therefore,

Ψ*(um−1um−2) = m/2 - (m-2)/2 =1
Hence the theorem. ⋄

Theorem 2.2: If G = (V,E), |V| = p is graceful, then there is a parti-
tion of V into disjoint subsets V1 and V2 such that the number of edges
having one end in V1 and the other in V2 is the least integer greater than
or equal to p/2 [12].

Proof : Given graph G = ( V, E) of order p has a graceful labeling Ψ.
Consider the partition P=(V1, V2) of V such that V1 = {u∈ V ; Ψ(u) ≡
0 (mod 2)}.
Then there are least integer greater than or equal to p/2 odd values be-
tween 1 and p, and we get an odd difference only from the substraction
between an odd and an even number. Therefore the number of edges
having one end in V1 and the other in V2 is the least integer greater than

18



or equal to p/2 [12]. ⋄

Theorem 2.3: Let G be an Eulerian graph m vertices. If m ≡ 1, 2
(mod 4), then G is not graceful [12].

Proof : Assume that m ≡ 1, 2 (mod 4). Suppose that G = ( V, E ) is a
graceful Eulerian graph. Let Ψ : V to [ 0, m ] be a graceful labeling of G
and consider the eulerian cycle C = (u0, u1, u2, ......, um−1, um = u0) of
G. Taking the sum of the edge labels of C modulo 2, we have

∑m
i=1Ψ*(ui−1ui) =

∑m
i=1|Ψ(ui−1) - Ψ(ui)|

=
∑m

i=1Ψ(ui−1) - Ψ(ui)
≡ 0 (mod2)
All the edges on the cycle C are distinct. since Ψ is a graceful labeling
of G, we’ve:

∑
e∈EΨ*(e) =

∑m
k=1 k = m(m+1)

2 ≡ 0 (mod2)

Thus, we must have m ≡ 0, 3 (mod 4) in order to satisfy the above
equation which is a contradiction to our assumption. Therefore G is
ungraceful[12]. ⋄

Theorem 2.4: Every graph is an induced subgraph of a graceful
graph [12].
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Proof : Consider the m - vertex graph G = ( V,E ). Create a graph H
from G such that G is an induced subgraph of H and that graph H is
graceful. Consider the vertex labeling Ψ : V to [ 0,k ], for some k ≥ m
and the edge labeling Ψ* which are injective. Now consider Ψ(u) = 0
and Ψ(v) = k ; u, v ∈ V(G). It lacks certain edge labels since it is not
graceful. Let the collection of omitted edge labels be {x1, x2, x3..., xr}.
Assume that xs+1, xs+2, xs+2, ......., xr are the vertex labels in that set
while x1, x2, ..., xs are not. Now add a new vertex wi with Ψ(wi) = xi

;1 ≤ i ≤ s and connect wi to u so that Ψ*(uwi) = xi.Also add another
vertex Wi with Ψ(Wi) = k+xi ; s+1≤ i ≤ r and connect vertex Wi to
u and v so that Ψ* (u Wi) = k + xi and Ψ* (v Wi) = xi. Due to the
creation of vertex labels with values bigger than k, the previous step
may have resulted in the insertion of further missing edge labels.The
missing edge labels in question are not vertex labels, though. To fix
this, add a new vertex zy with Ψ(wi) for each additional missing edge
label y. Connect zy to u so that Ψ*(uzy) = y. Then the final graph H
is graceful and it contains G as an induced subgraph [12]. ⋄

By Theorem 2.4, the non-gracefulness of graph G for graphs for which
G is an Induced subgraph is irrelevant. Additionally, it asserts that
any graph may always be transformed into a graceful graph.

Other Graceful Graphs

In this section, we’ll show how several graph classes behave gracefully.
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The majority of findings supporting gracefulness of graph classes are
provided by explicit graceful labeling. There aren’t many tools to deal
with a graph class’s lack of grace. In essence, we just have Theorem 2.2
and Theorem 2.3. Making an attempt to label the graph and finding a
contradiction is another technique to make a point.

Theorem 2.5: The complete graph Kn is graceful if and only if n ≤ 4
[12].

Proof : A graph having graceful labeling is provided. The resulting
labeling is also graceful if we shift every vertex label from k to m - k
because the edge labels will remain the same. Specifically, m-a and m-b
are created from the end vertices of an edge with labels a and b and
|(m-a) - (m-b)|. This is called the complementarity property.
Now, for Kn with n > 4, as previously, in order to obtain the edge label
m, we need a vertex with label 0 next to a vertex with label m. How-
ever, here every vertex is next to every other vertex. So, without losing
generality, we can label any vertex with 0 and any other vertex with m.
To obtain the edge label m - 1, we have two possibilities : m - 1 = |(m
- 1) - 0| = |m - 1|.The complementarity quality, however, enables us to
select any one without losing generality. We obtain the edge labels 1
and m - 1 by choosing to label a vertex with 1. Obtaining the edge label
m - 2= |(m - 2) - 0| = |(m - 1) - 1| = |m - 2|. m - 1 or 2 would result in
a duplicate edge label, hence we are unable to label a vertex with these
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values. Therefore, the only option we have is to assign a vertex the label
m - 2, so acquiring the edge labels 2, m - 3, and m - 2.
The next edge label that has to be acquired is m - 4 because m - 3 has
already been found on an edge. m - 4 = |(m-4) - 0| = |(m-3) - 1| =
|(m-2) -2| = |(m-1) -3| = |m - 4|. Once more, the only option left is
to label a vertex with 4, acquiring edge labels 3, 4, m - 6, and m - 4.
This will avoid the need to create a duplicate edge label. Five vertices
have been assigned labels at this time.However, m - 6 = 4 would be a
duplicate edge label forK5 anyway. For n ≥ 6, the following edge label
is m - 5. However, each of the five approaches to obtain m – 5 results
in a duplicate edge label. As a result, the label m - 5 cannot be on an
edge and the statement is true [12]. ⋄

Theorem 2.6: The cycle graph Cn is graceful if and only if n ≡ 0,3
(mod 4) [12].

Proof : Cycle graphs are eulerian graphs. In eulerian graphs, if n ≡ 1, 2
(mod 4), then Cn is not graceful. If not, let V(Cn) = {v1, v2, ..., vn−1, vn}.
If n ≡ 0 (mod 4), then label the vertices according to the formula:

Ψ(vi) =


i−1
2 ; i odd

n + 1− i
2 ; i even and i ≤ n

2

n− i
2 ; i even and i > n

2
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If n ≡ 3 (mod 4), then label v(Cn) as follows:

Ψ(vi) =


i−1
2 ; i odd

n + 1− i
2 ; i even and i ≤ n+1

2

n− i
2 ; i even and i > n+1

2

⋄

Theorem 2.7: The wheel graph Wp is graceful for all p ≥ 3 [12].

Proof : Let V(Wp) = {u0, u1, ...., up−1, v} where v is the vertex joined
with the cycle and consider the following instances:

If p ≡ 0 (mod 2), then the following formula gives a graceful labeling:

Ψ(ui) =


2p ; i = 0

2 ; i = p− 1

i ; i = 1, 3, 5, ..., p− 3

2p− i− 1 ; i = 2, 4, 6, ...., p− 2

Ψ(v) = 0

If p ≡ 1 (mod 2), then the following formula gives a graceful labeling:
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Ψ(ui) =


2p ; i = 0

2 ; i = 1

p + i ; i = 2, 4, 6, ..., p− 1

p + 1− i ; i = 3, 5, 7, ...., p− 2

Ψ(v) = 0 ⋄

Theorem 2.8: All caterpillar trees are graceful [12].

Proof : A caterpillar is a tree in which the removal of all leaves results
in a path graphs. Create a planar bipartite representation of the cater-
pillar tree and label it as in Figure 2.2. Verifying that such a drawing
approach is always feasible is simple [12]. ⋄

Figure 2.2: Graceful labeling of caterpillar tree

So path graph Pn is also a caterpillar tree. Also when applied to a path
graph the labeling scheme given by Theorem 2.8 produces the same la-
beling as before.

24



Theorem 2.9: The complete bipartite graph Kp,q is graceful ∀ p,q ≥1
[12].

Proof : Let G = (A, B, E) be a bipartite graph with a = |A| and b =
|B|. Give A’s vertices the numbers 0, 1, 2,.., a-1, and B’s vertices the
numbers a, 2a,..., ba. Every integer between 1 and ab has a distinct
representation in this fashion as the difference between a number in B
and a number in A [12]. ⋄

The idea of a bipartite graph can be reduced to a multipartite graph,
and in the same way, we have the whole multipartite graph. The follow-
ing theorem regarding the gracefulness of full multipartite graphs was
established.

Theorem 2.10: The complete multipartite graphs Kp,q , K1,p,q , K2,p,q

and K1,1,p,q are graceful [12].

Additionally, Beutner hypothesized that they are the only graceful com-
plete multipartite graphs, and computational proof was shown that this
is true for all complete multipartite graphs with at most 23 ver-

tices.
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CHAPTER 3

GRACEFUL TREES

Today, the Graceful Tree Conjecture is still an open question, and schol-
ars have tried a number of various methods to support the conjecture.
This section contains several findings regarding the grace of trees and
various approaches to the topic.

Conjecture 3.1 (Graceful tree conjecture): Every tree is graceful.

In chapter 2 we’ve already discussed that paths and caterpillars are
graceful. An approach to caterpillars extended to subclasses of trees
such as spider tree, lobster tree etc. However the characterization of
lobster tree has not yet been completed. The gracefulness of all lobsters
is still remain as a conjecture. In this chapter we give an approach to
the gracefulness of trees [9].

Definition 3.1: A tree with atmost one vertex of degree greater than
2 is called a spider tree and that unique vertex having that property is
called the branch point of the tree. And lobster tree is a tree with the
property that the removal of all its leaves result in caterpillar.

Lemma 3.1: Let tree T has a graceful labeling Ψ and let u ∈ V(T)
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with Ψ(u) = 0. If T’ is the tree created from T by adding a new vertex
solely adjacent to u, then T’ is graceful [12].

Proof : Given u ∈ v(T) such that Ψ(u) = 0. Let the number of edges
of T be m. Then the vertex labeling Ψ’ is such that Ψ’/v(T ) = Ψ and
Ψ’(v) = m+1 is a graceful labeling of T [12]. ⋄

Corollary 3.1.1: If w ∈ V(T) and has label m, then a graceful tree is
also produced when a new vertex that is only adjacent to w is added
[12].

Proof : Take a complementary graceful labeling of Ψ. ⋄

Corollary 3.1.2: If H is a caterpillar tree u ∈ V(T) has label 0 (or
m), then adding an edge between u and a vertex of H with maximum
eccentricity also produces a graceful tree [12].

Proof : Apply lemma 3.1, prefers to add leaves first, whenever it is rea-
sonable to do so. The conclusion holds true for every graceful graph G
as long as u ∈ V(G) has label 0 or m, it should be noted [12]. ⋄

By adding a vertex to smaller graphs, we can create new graceful graphs
according to Lemma 3.1. Then, it makes sense to wonder if this could
be used to demonstrate the Graceful Tree Conjecture, which states that
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for any tree, starting from a single vertex, there exists a finite succession
of graceful trees each of which is composed of the preceeding tree in the
sequence added with a vertex, with the final tree in the succession being
the desired tree itself [12].

Every tree must permit a graceful labeling in which every vertex may
be given the label 0, in order for such a series to occur. Such graphs are
known as O-rotatable graceful graphs in a broader sense. But it’s not
accurate to say that all trees have graceful O-rotation [12].

Let e = uv be an edge of tree T. The subtree of T including v ob-
tained by deleting the edge uv is denoted by Tu,v. If S = {w∈ V(T) : v
∈ uw − path} , then Tu,v = T[S] [12].

Lemma 3.2: Let u ∈ V(T) be a vertex adjacent to u1 and u2 in a
graceful tree T. Consider T’ = T - ( V(Tu,u1) ∪ V(Tu,u 2) ) and let v ∈
V(T’) , v ̸= u

(a) If u1 ̸= u2 and Ψ(u1) + Ψ(u2) = Ψ(u) + Ψ(v), then the tree obtained
by a disjoint union of T’, Tu,u1 , Tu,u2 , and connecting v to u1 and u2

is graceful with the same graceful labeling Ψ.

(b) If u1 = u2 and 2Ψ(u1) = Ψ(u) + Ψ(v), then the tree obtained by
a disjoint union of T’, Tu,u1 and connecting v to u1 produces the very
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graceful labeling Ψ [12].

Proof : It is sufficient to show that edge labels of uu1 and uu2 is same
as that of vu1 and vu2.

(a) |Ψ(u1) - Ψ(u)| = |Ψ(u) + Ψ(v) - Ψ(u2) - Ψ(u)| = |Ψ(v) - Ψ(u2)|
|Ψ(u2) - Ψ(u)| = |Ψ(u) + Ψ(v) - Ψ(u1) - Ψ(u)| = |Ψ(v) - Ψ(u1)|

(b) |Ψ(u1) - Ψ(u)| = | ((Ψ(u)+Ψ(v))/2) - Ψ(u)| = |(Ψ(u) - Ψ(v))/2|
|Ψ(u1) - Ψ(v)| = | ((Ψ(u)+Ψ(v))/2) - Ψ(v)| = |(Ψ(v) - Ψ(u))/2| [12]. ⋄

Figure 3.1: Transfer of subtrees from u to v

This operation is called the transfer and seen in transferring leaves from
one vertex to another. For example, consider the star graph K1,m. Let
us transfer some leaves from vertex 0 to vertex m. Also in another one
we can transfer k and m-k from 0 to m since k + (m-k) = 0 + m. Here
the transfer from vertex u to vertex u is denoted as u−→v.
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Figure 3.2 : Transfer of leaves from m to 0

Theorem 3.1: All trees with diameter 4 are graceful [12].

Proof : Consider the following transfers:
If the leaves being transferred are k, k+1, k+2, ..., k+s, it is called
type 1 u −→ v transfer. Here u + v = k + (k + s). This transfer
leaves an odd number of vertices connected to u.

If the transferred leaves are k, k+1, ..., k+s and l, l + 1, ..., l + s with
k + s < l, such a u−→v transfer is called type 2 transfer. Here u + v
= k + (l + s). This transfer leaves an even number of vertices
connected to u.

Using Lemma 3.1, it is suffices to show that every tree T of diameter 4
with an odd-degree center vertex (which is distinctive in tree T) has a
graceful labeling, with the central vertex having the most labels. This
is true because any subtree rooted at a child of the central vertex in a
tree with a diameter of four is a caterpillar tree.
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The number of vertices adjacent to w with an even degree should be x,
while those with an odd degree larger than 1 should be y. Let w be the
center vertex of T. Let d(w) = 2k + 1 and have a look at Figure 3.2.b.
We may derive T from that tree by following the sequence of transfers
0−→m-1−→1−→m-2−→2−→m-3 .....; where the initial x transfer (or
x-1 if y = 0) are of type 1 and the succeeding y-1 transfers (if y>1) are
of type 2. .

Let us look over the first transfer to confirm that the sequence works.
Let the vertices adjacent to w with even degree be {u1, u2, u3, ..., ux }.
Consider fig 3.2.b the vertex with label m is w. begin the transfer from
0−→m-1. Assume that u1 is the vertex 0 in this case and we want to
leave d( u1 ) - 1 vertices associated to it. At first the vertices adjacent
to 0 were k+1, k+2,....,m-k-2, m-k-1 . We can leave d(u1)-1 vertices by
type 1 transfer of a continous sequence of vertices to m-1 since 0 + m-1
= (k+1) + (m-k-2). Continuing the analysis we can see that the
sequence works [12]. ⋄

Theorem 3.2: All trees with diameter 5 are graceful [12].
The proof of this also done by the transfer operation as above. ⋄

The gracefulness of trees with at most 29 vertices was proved in 2003
by Horton. So far we have trees with at most 35 vertices are

graceful, which was verified by Fang in 2010 [12].
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CHAPTER 4

VARIANTS OF GRACEFUL LABELING

In this chapter we discuss the variants of graceful labeling. These vari-
ants are obtained by modifications in graceful labeling. k-graceful la-
beling, Triangular graceful labeling, Odd triangular graceful labeling,
Second order triangular graceful labeling, Fibonacci graceful labeling
etc, are some of the variants of graceful labeling. Here we discuss about
k-graceful labeling, triangular graceful labeling , odd triangular graceful
labeling on some classes of graphs and an introduction to second order
triangular graceful labeling, fibonacci graceful labeling.

k - Graceful Labeling

Definition 4.1: A k-graceful labeling of a graph G = (V, E) with q
edges is an injection Ψ : V(G) to {0, 1, 2, ..., q + k − 1} such that the
corresponding edge labels is {k, k + 1, k + 2, ..., q + k − 1}.

Theorem 4.1: For all k ∈ N, the cycle Cn, n ≡ 0 (mod 4) is k-graceful
[7].

Proof : Let Cn be a cycle with V(Cn) = {v1, v2, ..., vn−1, vn}. Consider
the mapping Ψ: V(Cn) to {0, 1, 2, ...., n + k − 1} defined by,
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Ψ(vi) =


i−1
2 ; i odd

n + k − i
2 ; i even and i ≤ n

2

n + k − 1− i
2 ; i even and i > n

2

and the mapping Ψ is injective. Also the induced mapping Ψ*: E(Cn)
to {k, k + 1, k + 2, ..., n + k − 1} is bijective, given as Ψ*(u,v) = |Ψ(u)
- Ψ(v)| for every (u,v) ∈ E(Cn) and u,v ∈ V(Cn), Thus Ψ is k-graceful
labeling of Cn [7]. ⋄

Theorem 4.2: Paths Pn are k-graceful for all k [7].

Triangular Graceful Labeling

Definition 4.2: A graph G = (V,E) of order p and size q is called
triangular graceful if there is an injection Ψ: V(G) to {0, 1, 2, ...., Tq}
where T1 = 1, T2 = 3, T3 = 6, Tn = (n(n+1))/2 such that the induced
function on E(G) given by Ψ*: E(G) to {T1, T2, T3, ....Tq} defined as
Ψ*(ViVj) = |Ψ(Vi)-Ψ(Vj)| for every ViVj ∈ E(G) is injective. The
function Ψ is called triangular graceful labeling.

Theorem 4.3: The path Pm is triangular graceful, ∀ m ≥ 2 [3].

Proof : Let {V1, V2, ....., Vm} be the vertex set of Pm. Define a function
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Ψ: V(Pm) to {0, 1, 2, ...., Tm−1} as follows:
Ψ(V1) = 0
Ψ(V2) = Tn ; n = m - 1
Ψ(V2i) = Ψ(V2i−2) - [m - (2i - 2)] ; i= 2, 3,...,[m/2]
Ψ(V2i−1) = Ψ(V2i−3) + (m - i) + (3 - i) ; i= 2, 3,...,[(m+1)/2]

and the edge labeling is given by Ψ*(ViVj) = | Ψ(Vi) - Ψ(Vj) | for every
ViVj ∈ E(Pm) of the form {T1, T2, T3, ....Tm−1}. Then Ψ and Ψ* are
1-1. Hence the path Pm is triangular graceful ∀ m ≥ 2 [3]. ⋄

Figure 4.1 : Triangular graceful labeling of P5

Theorem 4.4: The cycle Cn are triangular graceful, for n ≡ 0 (mod 4)
[3].
Proof : Let V1, V2, ....., Vn be the vertices of Cn. Label the vertices as:
Ψ(V1) = 0
Ψ(Vn) = Tn

Ψ(V2) = Tn−1

Ψ(Vi−1) = Ψ(Vi) ± Ti−2 ; i = n, n - 1,...,4
such that | Ψ(Vi−1) - Ψ(Vi) | = Ti−2 and | Ψ(V2) - Ψ(V3) | = T1

Then the set of edge values are T1, T2, T3, ....Tn.
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Thus Cn is triangular graceful for n ≡ 0 (mod 4). ⋄

Theorem 4.5: The complete graph Kn is not triangular graceful,
∀n ≥ 3 [3].

Proof : Consider K3. To obtain a triangular graceful labeling, V(K3)
∈ {0,1,2,..,T3} = {0, 1, 2, ..6} so that E(K3) = {T1, T2, T3} = {1, 3, 6}.
Assume that the vertex V1 is labeled 0. The favourable outcomes for
V2 are 6, 1, 3. If Ψ(V2) = 6. Then | Ψ(V1) - Ψ(V2) | = 6 = T3. But
there is no number α ∈ {0, 1, .., 6} such that | Ψ(V2) - α | = 3 or 1.
Therefore K3 is not a triangular graceful graph. Therefore Kn is not
triangular graceful as it contains K3. ⋄

Theorem 4.6: The Wheel Wn are not triangular graceful [3].

Proof : In wheel graph, we know that the central vertex is adjacent to
all the other vertices. so we cannot label 0 to the central vertex. If this
is the case then the labeling of the remaining vertex must be triangular
numbers which will not give our required edge labeling. Moreover, the
central vertex must be adjacent to 0, which makes the central value a
triangular number, then the edge values will not again be triangular
numbers. Thus wheels are not triangular graceful [3]. ⋄

Theorem 4.7: The complete bipartite graph Km,n is not triangular
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graceful, ∀ m, n ≥ 2 [3].

Proof : Let {V1, V2, ..., Vm} and {U1, U2, ....Un} be two disjoint vertex
set of Km,n. Let Ψ(U1) = 0. Then V1, V2, V3, ......Vm must be triangular
numbers. But it is not possible to find a number α to label the vertices
U2, U3, ..., Un to get | Ψ(Vi) - α | a triangular number. Therefore Km,n

is not a triangular graceful graph [3]. ⋄

Odd Triangular Graceful Labeling

Definition 4.3: A graph G = (V,E) of order p and size q is called an odd
triangular graceful if there is an injection Ψ: V(G) to {0, 1, 2, ...., T2q−1}
where Ti is the ith triangular number such that the induced function on
E(G) given by Ψ*: E(G) to {T1, T3, T5, ....T2q−1} defined as Ψ*(ViVj)
= |Ψ(Vi)-Ψ(Vj)| for every ViVj ∈ E(G) is injective. The function Ψ is
called an odd triangular graceful labeling [6].

Theorem 4.8: All paths Pn are odd triangular graceful graphs [6].

Proof : Let V(Pn) = {V1, V2, ...., Vn}. Then the size of Pn is q = n-1
and let Tq be the qth triangular number.
Consider the mapping Ψ: V(G) to {0, 1, 2, ...., T2q−1}, label the vertices
as follows:
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Ψ(V1) = T2q−1, Ψ(V2) = 0, Ψ(V3) = 1,
Ψ(Vi+3) = Ψ(Vi+2) + (−1)i+1 T2q−(2i+1), 1 ≤ i ≤ q - 2
Ψ(Vn) = Ψ(Vn−1) + (−1)n T3

which will give Ψ as an injective function and the induced function Ψ*
on E(Pn) is given by Ψ*(u,v) = | Ψ(u) - Ψ(v) | ∀ u,v ∈ E(Pn). So Ψ is an
odd triangular graceful labeling.Thus paths are odd triangular graceful
graphs [6]. ⋄

Theorem 4.9: All stars K1,n are odd triangular graceful graphs [6].

Proof : Let V(K1,n) ={V0, V1, ...., Vn} and E(K1,n) = {V0Vi/1 ≤ i ≤ n}.
Then its order = n+1 and size = n.
Consider the mapping Ψ: V(K1,n) to {0, 1, 2, ...., T2q−1}, label the ver-
tices as follows:
Ψ(V0) = 0, Ψ(Vi) = T2i−1 ; 1≤ i ≤ n− 1

Ψ(Vn) = T2n−1 = T2q−1

Then the mapping Ψ is injective and the induced mapping Ψ* on E(K1,n)
is given by Ψ*(u,v) = |Ψ(u) - Ψ(v)|, ∀ u,v ∈ E(K1,n) = {T1, T3, ....T2q−1}.
So Ψ is an odd triangular graceful labeling. Thus stars K1,n are odd tri-
angular graceful graphs [6]. ⋄

Graceful graphs need not be triangular graceful or odd triangular grace-
ful. For example, complete graph K3 is graceful. But it is neither trian-
gular graceful or odd triangular graceful. Also some graphs are graceful,
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triangular graceful and odd triangular graceful. Example : stars K1,n.
Moreover, cycle C6 is triangular graceful but not odd triangular graceful.

Definition 4.4: The minimum number of vertices whose removel from
the graph G which makes the resulting graph odd triangular graceful is
called the odd triangular graceful number denoted by Ot

gn(G). For
exmaple, Cycles are not odd triangular graceful. But, if we remove one
vertex from cycle, the resulting graph is a path which is odd triangular
graceful. Therefore Ot

gn(Cn) = 1

Definition 4.5: Let G be a graph with order p and size q. A second

order triangular graceful labeling of graph G is an injection Ψ:
V(G) to {0, 1, 2, .., Sq} where Sq is qth second order triangular number
given by Sq = (q(q+1)(2q+1))/6 such that Ψ* is a bijection, Ψ*: E(G)
to {S1, S2, ..., Sq} defined as Ψ*(ViVj) = |Ψ(Vi)-Ψ(Vj)| ∀ ViVj ∈ E(G).
The graph that admits second order triangular graceful labeling is called
second order triangular graceful graph [10].

Definition 4.6: A fibonacci graceful labeling of a graph G is an in-
jection Ψ : V(G) to {0, 1, 2, ..., Fq} where Fq is the qth fibonacci number.
Then the induced edge labeling Ψ*(u,v) = |Ψ(u) - Ψ(v)|, ∀ u,v ∈ E(G)
is a bijection onto the set {F1, F2, ....., Fq}. The graph Gthat admits
fibonacci graceful labeling is called fibonacci graceful graph [11].
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CHAPTER 5

OTHER APPLICATIONS OF GRACEFUL
GRAPHS

Application of graceful graphs in dental arch

The dental arch can be divided into lower arch and upper arch. Right
and left central incisors, lateral incisors, canines, first and second
premolars, and molars make up each arch. Here, it’s taken into
account up until the first molars. On each side of the dental arch, there
are six teeth overall, for a total of 12 teeth.
Each tooth in the arch is regarded as a vertex, and a line connecting
the neighboring teeth and teeth of the same kind on the left and right
side creates the edges. Apply graceful labeling to the graph where the
vertex set and edge set is given by V(G) = {0, 1, 2, ...., 16} and E(G) =
{1, 2, ...., 16}.
Vertex labels and edge labels are discovered to be distinct during
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labeling. In addition, the arrangement of the vertex labels follows a
specific pattern. Utilizing graph labeling, one can evaluate how
different teeth relate to the arch [5].
The dental arch can also be represented by k-graceful labeling.

In k-graceful labeling of dental arch, let q = no of edges = 16, k= 12.
Then the vertex set consist of labels from 0 to q+k-1 = 16+12-1 = 27
and the edge set consists of k, k+1,...., q+k-1.i.e V = {0, 1, 2, ...., 27}
and E = {12, 13, ......, 27}. Thus the dental arch can be represented by
k-graceful labeling.
The dental arch can also be represented by odd graceful labeling in
which vertex set V = {0, 1, ...., 2q − 1} = {0, 1, 2..., 31} and edge set
consists of all odd labels <31. That is E = {1, 3, 5, ...., 31}.

Using graceful labeling the analysis of the arch’s teeth might be done
easily. Consequently, graceful labeling is an effective technique that
enables the learning of complex patterns with ease and convenience in
a variety of domains.
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Coding Theory

It is analogous to numbering a complete graph in a way that ensures
that all edge numbers are distinct to create certain significant families
of good non periodic codes for pulse radar and missile guidance. The
time positions at which the pulses are transmitted are then determined
by the vertex number. A full graph is one in which every pair of vertex
is connected by an edge.
In K4, p= |V| = 4, q = |E| = 6. Therefore Ψ: V to {0, 1, ...6} and Ψ*:
E to {1, 2..., 6}.

Yet K5 is semi-graceful labeled. If the requirement that the edge
lengths be consecutive is eased, this is referred to as a semi-graceful
labeling. By including n+1 edge lengths to the graph, one edge length
can be skipped.The semi-graceful labeling of K5 is given below.
p = |V| = 5, q = |E| = 10. Therefore Ψ:V to {0, 1, 2, ..11} and Ψ*: E
to {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}.
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When edge length limitations are kept the same but vertex labels are
permitted to extend beyond the largest edge length value, this is
known as quasi-graceful labeling. This kind of elegant labeling makes
it possible to extend the notion of coding [2].

Communication Networks

The lines connecting any two communication centers might be labeled
with the difference between two center labels (i.e. vertex labels), if the
communication network contained a fixed number n+1 of communica-
tion centers (i.e. vertex) and they were numbered 0, 1, .., n.

We would be able to mark the connections between each communica-
tion center if the grid were organized as an elegant graph, giving each
connection a unique label. Such labeling has the benefit of allowing a
straightforward algorithm to identify which two centers are no longer
connected in the event that a link breaks [8].
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CONCLUSION

There are still properties to be discovered about the graceful labeling of
graphs, a subject of research for many years. From mathematicians to
scientists who came in contact with it, graceful trees have been labeled
as diseased. Numerous studies using graceful labels and graceful trees
are still being conducted. This project presents some theoretical find-
ings and provides a brief summary of the topic.

The issue is discussed in Chapter 2, along with several elegantly simple
graph classes like cycles and wheels. We also provide required criteria
for the existence of a graceful labeling for a graph. In Chapter 3, we
concentrate on how to gracefully label trees, more precisely, how to ap-
proach the Graceful Tree Conjecture in several ways.

In chapter 4, we have discussed about different variants of graceful la-
beling.There are more variations of graph labeling. All these variations
are found to tackle the graceful tree conjecture. Eventually in chapter
5, we have seen the widespread applications of graceful graphs in dental
arch, coding theory and communication network.
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