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INTRODUCTION

A group that is also a differentiable manifold is known as a lie group in mathemat-

ics. While groups define the abstracts, general concepts of multiplication and taking

inverses, a manifold is a space that is similar to Euclidean space locally. Combining

these two concepts creates a continuous group that allows for the multiplication and

taking of the inverse of points.A lie group is produced if the multiplication and taking

of inverses are further defined to be smooth (differentiable).

The idea of continuous symmetry can be naturally represented by Lie groups, one of

whose well-known applications is the rational symmetry in three dimensions. In nu-

merous areas of modern mathematics and physics, Lie groups are extensively used. Lie

groups where first found by studying matrix sub groups G contained in GLn (R) or

GLn(C), the groups of n × n invertible matrices over R or C.

Lie algebras are closely related to Lie group, which are groups that are also a smooth

manifold, with the property that the group operations of multiplication and inversion

are smooth maps. Any Lie group give rise to a Lie algebra.In contrast, there is a con-

nected Lie group that is specific to covering for any one-dimensional Lie algebra over

real or complex numbers. This correspondence between Lie groups and Lie algebra al-

lows one to study Lie groups in terms of Lie algebras. Lie algebras and their repre-

sentations are used extensively in physics, notably in quantum mechanics and particle

physics.

In the first chapter we deal with some preliminaries of Lie groups, especially with Man-

ifolds. The second chapter deals with Matrix lie groups and the relative concepts, where
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in the next chapter we discuss about Lie algebra and some related topics.In the fourth

chapter we discuss about applications of matrix lie group.
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Chapter 1

PRELIMINARIES

1.1 MANIFOLDS

Basic Definitions

1.1.1 Definition

A topological manifold M of dimension n is a topological space that is locally homoeo-

morphic to Rn. This implies that for each point m in M , there is neighbourhood U of

m as well as a one-to-one correspondence map ϕ of U into some open set ϕ(U) in Rn

such that the inverse map ϕ−1 : ϕ(U) → U is continuous. A manifold is a topological

space that looks locally like a small piece of Rn . The map ϕ is thought to define lo-

cal coordinate functions X1,X2,....,Xn where each Xk is the continuous function from U

into R given by Xk(m)=ϕ(m)k[4]
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1.1.2 Definition

A smooth manifold of dimension n consist of a topological manifold M and a distinct

family of local coordinate system (Uα,ϕα) with the following properties.[4]

1.Every point in M is contained in atleast one of the Uα’s.

2.For any two of these coordinate systems (Uα,ϕα) , (Uβ,ϕβ) the change of coordinates

maps ϕβ ◦ ϕα−1 is a smooth map of the set ϕα(Uα∩Uβ) ⊂ Rn onto the set ϕβ(Uα∩Uβ)

⊂ Rn.[4]

This means that to create a smooth manifold, we begin with a topological manifold

and then select a set of local coordinate systems that covers the entire manifold and

such that at any time two coordinate systems are defined in overlapping regions, the

expression for one set of coordinate system terms of the other is always smooth. Note

that these coordinate systems must be chosen in order to provide smooth structure to

the topological manifold M . Some manifolds do not admit a smooth structure, when a

smooth structure exists, it is not unique.[4]

1.1.3 Definition

A smooth local coordinate system to be any local coordinate system (U,ϕ). A function

f : M −→ R is called smooth if for each smooth local coordinate system (U,ϕ) , the

function f ◦ ϕ−1 is a smooth function on the set ϕ(U). In other words f is smooth if it

is smooth in each smooth local coordinate system.
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1.2 Tangent Space

1.2.1 Definition

The tangent space at m to M ,denoted Tm(M ) , is the set of all linear map X from C∞(M )

into R satisfying[4]

1. The “product rule”: X(fg)=X(f)g(m)+f(m)X(g) for all f and g in C∞.[4]

2. Localization: If is equal to g in a neighbourhood of m, then X(f)=x(g).[4]

This is clearly a real vector space. A tangent vector at m is an element of Tm. If X1,

X2,...,Xn is a local coordinate system, then each tangent vector X at m can be uniquely

written as[4]

X(f)=
∑n

k=1 ak
∂f
∂xk

(m)

for some real constants a1,a2,...an. This indicates that if M is a manifold of dimension

n, then Tm(M ) is a real vector space of dimension n for each m in M .[4]

1.3 Submanifold of a vector space

1.3.1 Definition

If V is a finite dimensional real vector space, we can use a single, globally specified lin-

ear coordinate system to transform V into a smooth manifold.[4]

Given two vectors u, v in V, we can define the directional derivative of a given func-

tion at the point u in the direction of the vector v as

(Dvf)(u)=
d
dtf(u+tu)|t=0
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A smooth embedded sub manifold of dimension k if given any m0 in M , there exist a

smooth coordinate system (ϕ,U) defined in a neighbourhood U of m0 such that for any

m ∈ U, m is in U∩M if and only if ϕ(m) is in Rk ⊂ Rn.[7]

1.3.2 Proposition

Let M be a smooth embedded sub manifold of a finite dimensional real vector space

V. The tangent space to M at m is the set of all u in V such that there exists a smooth

curve y in M with y(0)=m and dy
dt=u, for any m ∈ M.

1.3.3 Definition

A complex manifold is a smooth manifold of dimension 2n in which the basic coordi-

nate patches (Uα,ϕα) have the feature that change of coordinates maps ϕβ ◦ ϕα−1 is

holomorphic for each α and β. Here R2n is identified with Cn and holomorphic means

the same as complex analytic.[4]

If V is a complex vector space, the subset M of V is known as an embedded complex

sub manifold of dimension k if, for each m◦ ∈ M , there exist a holomorphic local coor-

dinate system (ϕ,U) defined in neighbourhood U of m◦ such that for any m ∈ U, m is

in U∩M if and only if ϕ(m) is in Ck ⊂ Cn.[4]

Some examples of manifolds:

One – dimensional manifolds includes lines and circles. Two dimensional manifolds

are also called surfaces. Examples includes the plane, the sphere, and the torus, which

can all be embedded in three-dimensional real space, but also the Klein bottle and real
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projective plane, which will always self-intersect when immersed in three-dimensional

real space. Although a manifold locally resembles Euclidean space, meaning that ev-

ery point has a neighbourhood homoeomorphic to an open subset of Euclidean plane,

because it has the global topological property of compactness that Euclidean space

lacks, but in a region, it can be charted by means of map projections of the region into

the Euclidean plane. Manifolds need note closed; thus, a line segment without its end

points is a manifold.

And they never countable, unless the dimension of the manifold is 0. Putting these

freedoms together, other examples of manifolds are a parabola, a hyperbola, and the

locus of points on a cubic curve y2 =x3 - x.

1.4 GROUPS

Basic Definitions

1.4.1 Definition

A group G is a non-empty set together with a binary operation ∗ satisfying the follow-

ing properties;

1) Closure property: a ∗ b ∈ G for all a,b ∈ G

2) Associative law: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a,b,c ∈ G

3) Identity element: For all a ∈ G ∃ e ∈ G such that (a ∗ e)=(e ∗ a) = a

4) Inverse element: For all a ∈ G ∃ a−1 ∈ G such that (a ∗ a−1) = (a−1 ∗ a) = e
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1.4.2 Examples

1) Z , the set of integers, under the operation addition.

2) R , the set all real numbers, under the operation addition.

3) R∗ , the set of non-zero real numbers, under the operation multiplication.

1.4.3 Proposition(Basic group properties)

For any group G

• The identity element of G is unique[10].

• For each a ∈ G, the inverse a−1 is unique[10].

• For any a ∈ G, (a−1))−1 = a.

• For any a,b ∈ G, (ab−1) = b−1a−1[10].

• For any a,b ∈ G,the equation ax = b and ya = b have distinct solutions or in other

words the left anf right cancellation laws apply[10].

1.4.4 Definition

The general linear group, denoted GL(n,R), consists of the set of invertible n × n ma-

trices. We know that multiplication of invertible n × n matrices is associative, and each

invertible matrix has an inverse and an identity, GL(n,R), which forms group when

multiplied.[10]
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1.5 Basic definitions of Lie Groups

1.5.1 Definition

A (real) Lie group is a set G with two structures: group and manifold. These struc-

tures are compatible in the following sense: multiplication map G × G −→ G and in-

version map G −→ G are smooth maps. A Lie group morphism is a smooth map that

maintains the group operation: f(gh)=f(g)f(h),f(1)=1. For image and kernel of a mor-

phism, we shall use the standard notation Imf,Kerf.[7]

1.5.2 Definition

A complex Lie group is a set G with two structures: group and complex analytic man-

ifold. These structures are compatible in the following sense: multiplication map G ×

G −→ G and inversion map G −→ G are analytic maps. A complex Lie group mor-

phism is an analytic map that maintains the group operation: f(gh)=f(g)f(h), f(1)=1.[7]

Rn with the group operation given by addition , All usual groups of linear algebra,such

as GL(n,R) ,SL(n,R) are examples of Lie groups.

1.5.3 Definition

A closed Lie subgroup H of a (real or complex) Lie group G is a subgroup that also

happens to be a submanifold (for comples Lie groups,it will be a complex manifold).[7]
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Chapter 2

MATRIX LIE GROUPS

2.1 Definitions of a Matrix Lie Group

The general linear group over the real numbers GL(n,R)(or complex numbers GL(n,C))

is the collection of all n×n invertible matrices having real entries(or complex entries).

Let Mn(C) be the space containing all matrices with complex entries.

Let Am denote a series of complex matrices in Mn(C). Am is said to converge to a ma-

trix A if each entry in Am converges (as m −→ ∞) to the corresponding entry of A. A

matrix Lie group is any subgroup G of GL(n,C) that has the property: If Am is any

matrix sequence in G, and Am converges to some matrix A then either A∈G or A is

not invertible.[8]

This is equivalent to saying that a matrix Lie group is a closed subgroup of GL(n,C).[1]
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2.2 Examples of Matrix Lie Groups

2.2.1 The general linear groups GL(n,R) and GL(n,C)

The general linear groups (over C or R) are matrix Lie groups in and of themselves.

GL(n,C) is , of course, a subgroup of itself.[3]

If Am is a sequence of matrices in GL(n,C) and Am converges to A, then by the defi-

nition of GL(n,C) ,either A ∈ GL(n,C) or A is not invertible.GL(n,R) is subgroup of

GL(n,C), hence by definition of matrix Lie group GL(n,R) is matrix Lie group.[1]

2.2.2 The special Lie groups SL(n,R) and SL(n,C)

The special linear group (over R or C) consist of all n×n invertible matrices with de-

terminant one. Both of these are subgroups of GL(n,C). Because the determinant is

a continuous function, An is a sequence of matrices with determinant one. As a result

SL(n,R) and SL(n,C) are matrix Lie groups.[3]

2.2.3 The orthogonal and special orthogonal groups, O(n) and SO(n)

If the column vectors that make up A are orthonormal where A is an n×n real matrix,

then A is orthogonal, that is, if
∑n

i=1 AijAik = δjk 1 ≤ j, k ≤ n where δjk is the Kro-

necker delta.[3]

Equivalently, If A retains the inner product, it is orthogonal, namely if ⟨x, y⟩ = ⟨Ax,Ay⟩

for all vectors x,y in Rn. Another equivalent definition is that A is orthogonal if AtrA

= I (where Atr is the transpose of A)[4]

The orthogonal group O(n) is the set of all n×n real orthogonal matrices and is a sub-
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group of GL(n,C). Because the relation AtrA=I is retained under taking limits, the

limit of sequence orthogonal matrices is orthogonal. As a result O(n) is a matrix Lie

group.[4]

If A is an orthogonal matrix, then det A=±1.

The special orthogonal group SO(n) is the set of all n×n matrices with determinant

one. This is clearly a subgroup of O(n), and so GL(n,C). Furthermore both orthog-

onality and the property of having determinant are preserved under limits, therefore

SO(n) is a matrix Lie group.[3]

2.2.4 The unitary and special unitary group

If the column vectors of A are normal, where A is an n×n complex matrix then A is

said to unitary,that is,[3]

∑n
i=1 AijAik = δjk

Equivalently if A retains the inner product then A is unitary, namely if ⟨x, y⟩ = ⟨Ax,Ay⟩

for all x,y in Cn. In other words A is unitary if A∗A = I where A∗ is the adjoint of A.

For all unitary matrices |det A| = 1.[3]

The unitary group U(n) is the set of all n×n unitary matrices. This is clearly a sub-

group of GL(n,C). Since the limit of unitary matrices is unitary, this implies that U(n)

is a matrix Lie group. The special unitary matrix SU(n) is the set of unitary matrices

with determinant one.[2]
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2.2.5 The groups R∗, C∗, S1 and Rn

Under multiplication, the group R∗ of non-zero real numbers is isomorphic to GL(1,R).

As a result, we will refer to Rn as matrix Lie groups. Similarly, the group C∗ of non-

zero complex numbers under multiplication is isomorphic to GL(1,C) and the group S1

of complex numbers with absolute value one is isomorphic to U(1).[3]

2.3 Compactness

2.3.1 Definition

If the following two conditions met, then a matrix Lie group G is said to be compact

to a matrix[3]

a. If Am is any sequence of matrices in G and converge to a matrix A then A is in G.[3]

b. There exist a constant C such that for all A ∈ G, |Aij| ≤ C for all 1 ≤ i,j ≤ n.[3]

2.3.2 Examples of compact groups

The groups O(n) and SO(n) are compact. Because the limit of orthogonal matrices is

orthogonal and the limit of matrices with determinant one has determinant one, prop-

erty (a) is satisfied. Because A is orthogonal, the column vectors of A have norm one,

hence property (b) is satisfied, and hence |Akl| ≤ 1 for all 1 ≤ k,l ≤ n. By a similar ar-

gument we can show that U(n) and SU(n) are compact.[4]
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2.3.3 Examples of non-compact groups

All other examples of matrix Lie groups are non-compact. The groups GL(n,R) and

GL(n,C) violate the property (a). The groups SL(n,R) and SL(n,C) violate (b).

2.4 Connectedness

2.4.1 Definition

A matrix Lie group G is said to be connected if a continuous path A(t) exists between

any two matrices A and B in G, a ≤ t ≤ b, lying in G with A(a)=A and A(b)=B.

A matrix Lie group G which is not connected can be decomposed (uniquely) as a union

of many sections, called components, such that two members of the same component

can be united by a path, but two elements of different components cannot be joined.[4]

2.4.2 Proposition

If G is a matrix Lie group, then the component of G containing the identity element is

a subgroup G.[4]

Proof:

Let A and B be matrices in the component containing the identity element. This means

that continuous pathways A(t) and B(t) exist with A(0)=B(0)=1, A(1)=A, and B(1)=B.

Then A(t)B(t) is a continuous path that begins with I and ends with AB. Thus, the

product of two identity component parts is again in the identity component. Further-

more because A(t)−1 is a continuous map beginning at I, the inverse of any element of

the identity component is also in the identity component.Thus the identity component
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is a subgroup.[4]

2.4.3 Proposition

The group GL(n,R) is not connected, but has two components. These are GL(n,R)+,

the set of n×n real matrices with positive determinant, and GL(n,R)− the set of n×n

real matrices with negative determinant.[4]

Proof:

If det A > 0 and det B < 0, any continuous path connecting A and B must include a

matrix with determinant zero and hence pass outside of GL(n,R). As a result GL(n,R)

is not connected.[4]

Both GL(n,R)+ and GL(n,R)− are connected. Assume C is any matrix with a nega-

tive determinant, and A and B are in GL(n,R)−. Then C−1A and C−1B are in path

joining A and B in GL(n,R)−.[4]

2.4.4 Theorem

Every matrix Lie group is a smooth embedded submanifold of Mn(C) and thus a Lie

group.

2.4.5 Definition

Consider G and H to be matrix Lie groups. A Lie group homomorphism is a map ϕ

from G to H, if[4]

1. ϕ is a group homomorphism[4]

2. ϕ is continuous.
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It is called a Lie group isomorphism if in addition ϕ is one-to-one and onto and the in-

verse map ϕ−1 is continuous.[4]

2.4.6 Theorem

Let G and H be Lie group and ϕ be the group homomorphism from G to H. If ϕ is con-

tinuous, it is also smooth.[4]
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Chapter 3

MATRIX LIE GROUPS AND THEIR LIE

ALGEBRAS

3.1 Algebra

3.1.1 Definition

An algebra A over K is a vector space over K together with a bilinear map A×A −→

A denoted (x,y) −→ xy. In symbols we have:[9]

• x(y+z)=xy+xz and (x+y)z=xz+yz for all (x,y,z) ∈ A3[9]

• (ax)(by)=(ab)(xy) for all (a,b) ∈ K2,(x,y) ∈ A2[9]

3.1.2 Proposition

Let A be an algebra, and the vector space A plus the multiplication defined by (x,y)

−→ yx is another algebra called the opposite algebra and indicated by Aop.[9]

23



3.1.3 Definition

An endomorphism D of an Algebra A is called a derivation of A if the equivalence D(x,y)=

D(x)+D(y) holds for every (x,y) ∈ A2[9]

3.1.4 Proposition

The kernel of a derivation is a subalgebra of A[9]

Proof:

Let the kernel contain x and y.The presence of xy in the kernel must be demonstrated.

This follows from what a derivation is defined as.[9]

3.1.5 Proposition

If D1 and D2 are derivations of an algebra A, then the commutator [D1,D2]=D1D2-D2D1

is a derivation of A as well.[9]

3.2 The notion of Lie algebra

3.2.1 Definition

If the following axioms are satisfied a vector space L over a field F, with an operation

L×L ,denoted (x,y) −→ [x,y] and known as the bracket or commutator x and y is termed

a Lie algebra over F:[11]

L1:The bracket operation bilinear

[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]forallx, y, z∈ L
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L2:[x,x]=0 ∀ x∈L

L3:[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0 x,y,z∈L

Axiom L3 is called the Jacobi identity.

3.2.2 Result

In a lie group L,[x,y]=-[y,x]

Proof:

[x+y,x+y]=[x,x+y]+[y,x+y]

=[x,x]+[x,y]+[y,x]+[y,y]

By L2 [x+y,x+y]=0

That is;

[x,x]+[x,y]+[y,x]+[y,y]=0 and [x,x]=0 [y,y]=0

Therefore,

[x,y]+[y,x]=0

[x,y]=-[y,x][6]

3.2.3 Result

In a Lie algebra L, if char F ̸= 2 then [x,y]=-[y,x] ∀ x,y ∈ L implies that [x,x]=0

Proof:

Given char F ̸= 2. Also given that [x,y]=-[y,x]

put x=y then, [x,x]=-[x,x]

i.e,

2[x,x]=0
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i.e,

[x,x]=0

3.2.4 Definition

A subspace K of L is called a subalgebra if [x,y] ∈ K ∀ x,y ∈ K.

3.2.5 Definition

Two Lie algebra L and L’ are said to be isomorphic if there exit a vector space isomor-

phic ϕ : L −→ L’ fulfilling ϕ([x,y])=[ϕ(x)ϕ(y)] ∀ x,y ∈ L and then ϕ is said to be an

isomorphism of Lie algebra.[6]

3.2.6 Proposition

Any sub algebra of a Lie algebra, any quotient algebra of a Lie algebra, any product

algebra of a Lie algebras is again a Lie algebra.

3.2.7 Proposition

The opposite algebra Aop of Lie algebra A is a Lie algebra once more and the morphism

Aop −→ A is an isomorphism which is defined by x −→ x.[9]
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3.3 Examples of Lie algebra

3.3.1 gl(V)

If V is a finite dimensional vector space over F, denote by End V The set of linear trans-

formations V −→ V. As a vector space over F, End V has dimension n2,[11]

and define a new operation,[x,y]= xy-yx, called the bracket of x and y. With this oper-

ation End V become a Lie algebra and it is the general linear algebra gl(V).[6]

For,

[ax+by,z]=[ax+by]z-z[ax+by]

=axz+byz-azx-bzy

=a[x,z]+b[y,z]

[ax+by,z]=a[x,z]+b[z,y]

z[ax+by]=azx+bzy-axz-byz

=a[z,x]+b[z,y]

[z,ax+by]=a[z,x]+b[z,y]

Therefore L1 satisfied

[x,x]=xx-xx=0

Therefore L2 satisfied

[x,[y,z]]+[y,[z,x]]+[z,[x,y]]

=[x,yz-zy]+[y,zx-xz]+[z,xy-yx]

=x(yz-zy)+y(zx-xz)+z(xy-yx)-(yz-zy)x-(zx-xz)y-(xy-yx)z

=xyz-xzy+yzx-yxz+zxy-zyx-yzx+zyx-zxy+xzy-xyz+yxz

=0

27



L3 also satisfied.

Therefore gl(V) is a lie algebra.

Note:Any subalgebra of a Lie algebra gl(V) is called a linear algebra.

3.3.2 sl(V)

Let V be a vector space with finite dimension over a field F. The Lie algebra gl(V) is

thus identified with a set of n×n matrices gln(F) where n is the dimension of V. The

set of all matrices with trace zero sln(F) is a sub algebra of gln(F) and we denote it as

sl(V).

Proof:

tr[x,y]=tr(xy)-tr(yx)

(because the matrix trace preserves bilinearity)[10]

tr([x,[y,z]]+[y,[z,x]]+[z,[x,y]])=tr[x,0]+tr[y,0]+tr[z,0]=0[10]

3.3.3 Example

The set of all anti symmetric matrices with the trace zero represented by son forms a

Lie algebra with the commutator acting as the Lie bracket.

3.3.4 Example

Any vector space can be made into a Lie algebra with the trivial bracket:

[v,w]=0 ∀ v,w ∈ V.
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3.3.5 Example

We can show that the real vector space R3 is a Lie algebra. Let a,b,c represents arbi-

trary vectors in R and let α, β and γ be arbitrary scalars.

1. (a × b) = -(b × a)

2. a × (βb + γc) = β(a × b) + γ (a × c) and

(αa + βb) × c = α(a × c) + β(b × c)

These are the properties of the cross product.

Now put a=b, (a × a)=-(a × a) → (a × a)=0 by 1

By the above properties cross product is skew symmetric and bilinear.

By vector triple product expansion x × (y × z) = y(x,z)-z(x,y)

To show that the cross product satisfies the Jacobi identity:

[x[y,z]]+[y[z,x]]+[z[x,y]] = x×(y×z)+y×(z×x)+z×(x×y)

=y(x.z)-z(x.y)+z(y.x)-x(y.z)+x(z.y)-y(z.x)

=0 (since dot product is commutative)

Therefore,by definition the real vector space R3 is a Lie algebra.[2]

3.4 Lie algebras of Derivations

3.4.1 Introduction

The derivative of f over g is a linear operator that obeys the Leibiniz rule.:

1) (fg)’=f’g+fg’

2) (αf)’=αf’ where α is any scalar.[10]
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3.4.2 Definition

The derivation of an algebra A over a field F is a linear map δ such that δ(f,g) = f(δg)

+ δ(f)g ∀ f,g ∈ A. The set of all derivation of A is represented by Der(A). Given δ ∈

Der(A) f,g ∈ A and α ∈ F.[10]

By property 2

(αδ)(fg) = αδ(fg) =α(fδ(g)+δ(f)g) = αfδ(g)+αδ(f)g[10]

Where F is a field , the Leibiniz rule is satisfied if and only if αf=fα.[10]

3.4.3 Example

Let x and y ∈ End(v) and δ,δ’ ∈ Der(V).

By the definition of the commutator, [δ,δ’] = (δδ’-δ’δ)

• Der(V) is a vector space of End(V):

δ[x,y]=δ(xy-yx)[10]

=xδ(y)+δ(x)y-(yδ(x)+δ(y)x)

=δ(y)x-yδ(x)+xδ(y)-δ(y)x

=[δ(x),y]+[x,δ(y)][10]

• The commutator δ,δ’-of two derivations δ,δ’ ∈ Der(V) is again a derivation.[10]

([δ,δ’](x))y+x([δ,δ’](y))=((δδ’-δ’δ)(x))y+x(δδ’-δ’δ)(y)[10]

=(δδ’(x)-δδ’(x))y+x(δδ’(y)-δ’δ(y))

=δδ’(x)y-δ’δ(x)y+xδδ’(y)-xδ’δ(y)

=δ(δ’(x)y)+δ’(x)δ(y)+δ(x)δ’(y)-xδ’δ(y)[10]
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-δ’(δ(x)y)-δ(x)δ’(y)-δ’(x)δ(y)-xδ(y)

=δ(δ’(xy))-δ’(δ(xy))

=[δ,δ’](xy)=δ(δ’(x)y+δ’(y))-δ’(δ(x)y+xδ(y))

3.4.4 Definition

Given x ∈ L, the map y −→ [x,y] is an endomorphism of L ,designated as adx, where

adx is an inner derivation. Derivation of the form [x,[y,z]]=[[x,y],z]+[y,[x,z]] are inner

all other are outer.[10]

Note: The collection of all derivations, Der(V) satisfies skew symmetry. Der(V) satisfy

the Jacobi identity according to the above definition. As a result Der(V) defines a Lie

algebra.[10]

3.4.5 Definition

The adjoint representation of a Lie algebra is the map L −→ Der(V) sending x to adx[10]

3.5 Ideals and Homomorphisms

3.5.1 Definition

A Lie algebra’s (L) subspace I is said to be an ideal of L if x ∈ L together imply [x,y]

∈ I. All Lie algebra ideals are two-sided by definition due to skew symmetry. That is,

if [x,y] ∈ I,then [y,x] ∈ I.[5]

The kernel of a Lie algebra L and L itself are trivial ideals contained in every Lie algebra.[5]
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3.5.2 Example

The set of all inner derivations adx ∈ I, is an ideal of Der(L)

Let δ ∈ Der(V). By definition of inner derivations ∀ y ∈ L[10]

[δ,adx](y)=(δ(adx)-(ad)x)δ)(y)

=δ[x,y]-adx(δ(y))

=[δ(x),y]+[x,δ(y)]-[adx(δ(y))]

=adx(δ(x)y)

Therefore by above definition adx is an ideal of Der(V)[10]

3.5.3 Definition

The centre of a Lie algebra L is a set

Z(L)={z∈L | [x,z]=0 ∀ x∈ L}[10]

The collection of elements in L for which the adjoint action adx provides the zero deriva-

tion is represented by the center.[10]

3.5.4 Definition

The centralizer of a subset X of L is defined to be

CL(X)={x∈L | [x,X]=0}[10]

By Jacoby;CL(X) is a sub algebra of L where CL(L)=ZL
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3.5.5 Definition

If the Lie algebra L has no ideals except itself and 0, if moreover[L,L] ̸= 0,we call L

simple.

3.5.6 Result

Z(L) is an ideal

Proof:

First we prove that Z(L) is a subspace of L.

For let z1,z2 ∈ L and c ∈ L

Then [x,z1]=0 ∀ x ∈ L

[x,z2]=0 ∀x ∈ L

Consider [x,cz1+dz2]=c[x,z1]+d[x,z2]=0

∴ cz1+dz2 ∈ L

∴ Z(L) is a subspace of L.

Next we have to show that [x,y] ∈ Z(L) where x∈L, y∈Z(L).

Let x,z ∈ Z(L) and y ∈ Z(L) be arbitrary

Now by Jacoby identity we get [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0

Thus we get [z,[x,y]]=0 ∀ z∈L

∴ [x,y]=0

Z(L) is an ideal of L.
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3.5.7 Definition

A Lie algebra L is called an Abelian Lie algebra if [x,y]=0 ∀ x,y ∈ L.

3.5.8 Definition

ϕ: L −→ L’ is a linear transformation which is referred to as a homomorphism if

ϕ([x,y]) = [ϕ(x), ϕ(y)] ∀ x,y ∈ L

ϕ is said to be a monomorphism if Kernel ϕ=0 and an epimor if Imϕ = L’.

3.5.9 Proposition

a) If ϕ: L−→ L’ is a homomorphism of Lie algebras, then L
Kernelϕ

∼= Imϕ.[6]

If I is any ideal of L included Kernel ϕ, there exist a unique homomorphism

ψ: L
I −→ L’ making in the following diagram commute:[6]

b) If I and J are ideals of I such that I ⊂ J, then J
I is an ideal of L

I and
(LI )

(JI )
is naturally

isomorphic to L
J .

c) If I and J are ideals of L, there is a natural isomorphism between (I+J)
J and I

I∩J .[6]

A representation of Lie algebra is a homomorphism ϕ: L −→ gl(V)[6].
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3.6 The Lie algebra of a Lie group

Let G be a matrix Lie group. We define Lie(G) by Lie(G)={A ∈ gl(n): etA∈G, ∀ t ∈

R}. Allow us to demonstrate that Lie(G) is a vector subspace of gl(n). Let A,B ∈ Lie(G).

Then we have et(A+B) = lim k −→ ∞ (e
tA
k e

tB
k )k ∈ G, where the final conclusion makes

advantage of the fact that G is enclosed in GL(n). As a result A+B ∈ Lie(G). Also if

A ∈ Lie(G) and α ∈ R then definitely αA ∈ Lie(G). As a result Lie(G) is also closed

under scalar multiplication thus a vector subspace of gl(n).[1]

Following that, we demonstrate that Lie(G) is closed under the Lie bracket in [x,y] =

x◦y-y◦x.[1]

That is, we show [A,B] ∈ Lie(G) ∀ A and B in Lie(G) where [A,B]=AB-BA. First we

require the following fundamental result.[4]

3.6.1 Lemma

Let G be a matrix Lie group. Let A ∈ G and X ∈ Lie(G) then AXA−1 ∈ Lie(G).[4]

Proof:

Note that etAXA−1

= AetxA−1 ∈ G for every t ≥ 0 and hence the result.

Now we get back at showing [A,B] ∈ Lie(G) ∀ A,B ∈ Lie(G).[4]

Let us define, Λ(t)=etABe−tA[1]

Λ(t) ∈ Lie(G) ∀ t ≥ 0

Next we observe Λ’(t) = AetABe−tA-etABAe−tA.

∴ AB-BA=Λ’(0)=lim h −→ 0 Λ(h)−B
h ∈ Lie(G)[1]

where the last conclusion is derived from the previously established fact that Lie(G) is
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a vector subspace of gl(n) and thus closed in norm topology of gl(n).[1].

3.6.2 Theorem

Let G be a matrix Lie Group.Then Lie(G) is a Lie subalgebra of gl(n) with the Lie

bracket[1].
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Chapter 4

APPLICATIONS OF MATRIX LIE

GROUPS

Matrix Lie groups have many applications in many fields such as physics, engineering,

computer science and economics. Some of the most common uses of Matrix Lie groups

include:

• Robotics: Matrix Lie groups are used to represent the orientation and position of

a robot arm and calculate changes between them. This allows the robot to easily

perform complex tasks such as material handling and assembly, with precision and

accuracy.

• Computer Graphics: Matrix Lie groups are used in computer graphics to represent

transformations of 3D objects such as rotation, translation, and scaling. This pro-

vides realistic simulation and animation of objects in a virtual environment.

• Quantum mechanics: Matrix Lie groups are used in quantum mechanics to repre-

sent the symmetries of physical systems. This allows calculation of important fac-
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tors such as energy level, transition probability and break point.

• Control Theory: Matrix Lie groups are used in control theory to represent the dy-

namics of system with symmetry . This allows the design of control algorithms

that can stabilize and control the behavior of complex systems.

• Econometrics: Matrix Lie groups are used in econometrics to model the evolution

of an economy over time. This allows analysis of business transactions and predic-

tion of future results.

• Differential Geometry: Matrix Lie groups are used in differential geometry to study

the geometry of curved surfaces. This allows the development of mathematical

tools that describe the behavior of bodies in curved space, such as the motion of

planets around the sun.

In general, matrix Lie groups are widely used in many different fields and are impor-

tant tools for understanding the behavior of complex systems.

In robotics, matrix Lie groups are used to represent the orientation and position of a

robot arm and to calculate changes between them.

The most commonly used Lie groups in robotics are the special orthogonal group SO(3)

and the special Euclidean group SE(3).

The special orthogonal group SO(3) is used to represent the rotation of a rigid body in

three-dimensional space. This group consists of all the 3x3 orthogonal matrices with

determinant equal to 1. The Lie algebra of SO(3) is the set of all 3x3 skew-symmetric
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matrices, which represent infinitesimal rotations. The Lie bracket operation in SO(3)

corresponds to the cross product of vectors, which represents the effect of successive

infinitesimal rotations.

The special Euclidean group SE(3) is used to represent the rigid body of the robot in

three-dimensional space, including rotation and translation. This group includes all

4x4 matrices holding distances and angles. The Lie algebra of SE(3) is the set of all

4x4 matrices that are obliquely symmetric about the block diagonal. The separator op-

eration in SE(3) corresponds to the cross product of vectors and the inner product of a

3x3 submatrix vector.

Robotic operators can represent and control robot operations in a rigorous mathemati-

cal fashion using matrix Lie groups; this allows the development of efficient algorithms

for planning, execution for improvement and management. For example, the use of Lie

groups has allowed the development of interpolation algorithms to ensure the smooth-

ness and uniformity of a robot arm. In addition, the Lie group method can be used to

predict the result of the robot from measurement, which is an important task in many

applications such as product management and assembly.

In robotics, the motion of a robot can be expressed as a series of transformations in

which each transformation corresponds to a change in position and direction. These

transformations can be represented by matrices, and the group of all matrices repre-

senting efficient transformations is called the special Euclidean group SE(3). The ele-

ments of this group are 4x4 matrices of the following format:
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R t

0 1


where R is a 3×3 rotation matrix representing the robot direction, t is a 3×1 transla-

tion vector representing the robot position, and inputs 0 and 1 represent the diagonal

structure of the matrix. The Lie algebra of SE (3) is the set of all 4×4 matrices of the

form:ω ν

0 0


Where ω is a 3×3 skew-symmetric matrix representing the angular velocity of the robot,

ν is a 3×1 vector, the wire represents the output line and input 0 represent the block

diagonal of the matrix structure.
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CONCLUSION

Lie groups play an enormous role in modern geometry, on several different levels. In

this paper we discussed about the basics of Lie algebra, Lie group and matrix lie group.

The example of both Lie group and Lie algebra are very familiar to us. In particle physics,

matrix Lie groups, particularly special unitary groups and special orthogonal groups,

play critical roles in modeling the symmetries of subatomic particles. Lie groups are

widely used in many parts of modern mathematics and physics.
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