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INTRODUCTION

Fuzzy set theory has been shown to be a useful tool to describe situations in which

the data are imprecise or vague.Their fuzzy logic offers highly valuable flexibility for

thinking because in the real world we frequently run into situations where we are

unable to discern whether the state is true or false.This allows us to take into account

any situation’s inaccuracies and uncertainties.

The majority of our traditional tools for formal reasoning, computing, and modeling

have a clear, deterministic, and exact nature. Crisp refers to yes-or-no type as

opposed to more- or less-type. An element in set theory can either be a member of

a set or not. In other words, each component should have a certain essence. For the

majority of circumstances in actual life, however, this accuracy cannot be anticipated

because; Real-world circumstances are frequently not rigidly predetermined and

cannot be properly explained.A human person could never simultaneously recognize,

interpret, and comprehend as much information as would be needed to fully describe

an actual system.
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One of the many disorganized changes in science and mathematics this cen-

tury relates to the idea of uncertainty or ambiguity.The conventional wisdom holds

that science should seek for certainty in all of its components, including precision,

specificity, sharpness, etc. As a result, uncertainty is considered to be unscientific

(including imprecision, non-specificity, consistency, etc.). The current perspective

holds that uncertainty is necessary for research; it is not only an inescapable pesti-

lence but also has a huge usefulness.

The fundamental mathematical foundation of fuzzy set theory and its most sig-

nificant applications will be covered in this project. Fuzzy set theory, neural network

theory, and evolutionary programming have all come to be referred to as ”computa-

tional intelligence” or ”soft computing” since 1992. These regions naturally have a

very close association with one another. However, in this project, fuzzy sets, fuzzy

set theory, and its practical applications will take center stage.



Chapter 1

PREREQUISITES

1.1 CRISP SETS (ORDINARY SETS/CLASSICAL

SETS)

In daily conversation, we frequently refer to groups of related items, such as a deck

of cards, a cricket team, etc. We also encounter collections in mathematics, such

as those of prime numbers, lines, and natural numbers.If we look at the collections

below:

1. Prime numbers less than 10.

2. The vowels in English alphabets.

3. The solution of the equation x2 − 7x+ 10 = 0.

Each of these examples is a well-defined collection of objects. In that way we

can decide whether a given particular object belongs to a given particular collection

or not. Therefor we shall say that an ordinary set is a well-defined collection

of objects.

3
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Sets are usually denoted by capital letters A, B,X, Y , Z, etc and the elements or

members of set are represented by small letters a, b, x, y, z, etc [3]. If a is an element

of a set A, we denote it as a ∈ A, reading ‘an element of A’ or ‘a belongs to A’ and

if b is not an element in A then we denote it as b /∈ A [3].

Two sets A and B are said to be equal if they have exactly the same elements

and we write A = B [3] . Otherwise they are said to be unequal and we write

A ̸= B.

If A and B are any two sets and every element of A is also an element of B,

then A is said to be a subset of B, denoted by A ⊆ B or equivalently, B is said

to be superset of A, denoted by B ⊇ A [3] . In other words, A ⊆ B if whenever

a ∈ A then a ∈ B. If A is a subset of B, but A is not equal to B, then A is a

proper subset of B, denoted by A ⊂ B or equivalently, B is a proper superset

of A denoted by B ⊃ A [3].

In a given situation, we typically have to deal with the basic set’s components

and sub components that apply to that situation. The system of natural numbers N

and its subsets, such as the set of all prime numbers, the set of all odd numbers, and

so on, are of particular importance to us as we explore the mathematical system of

numbers. The universal set is the name of this fundamental set. In other words, a

universal set in set theory is a set that contains all things, including itself. Typically,

the universal set U and all of its subsets (A, B, X, Y , etc.) are designated by the

letter U .

A classical set is differentiated in two ways:
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One method is to list the elements that belongs to the set; often called the roster

or tabular form, where all elements are listed, the elements being separated by

commas and are enclosed within braces {} . For example, set of all natural numbers

which divide 12 is enumerated as {1,2,3,4,6,12}.

Another method to describe the set analytic, that is, in the set builder form,

where all the elements of a set possess a single common property which is not pos-

sessed by any element outside the set [3]. For example, D={x : xisanaturalnumber;

3¡ x ¡10}

A classical set can also be defined by listing the member elements by using

characteristic function (indicator function) that can be defined on the set X

having the value 1 of A and a 0 for all others of X not in A .

That is, the characteristic function of a subset A of a set X (universal set) is a

function IA:X −→ {0, 1} defined as,a

IA(x)=

1 ifx ∈ A

0 ifx /∈ A

1.1.1 OPERATIONS ON CRISP SETS

For two sets A and B and universal set X,

1. Union: A∪B= {x ∈X: x ∈Aorx ∈B}[4]

2. Intersection:A ∩B= {x ∈X: x ∈Aandx ∈B}[4]

3. Compliment: A’={x/∈X: x /∈A} [4]
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4. Difference:A−B={x∈X: x ∈A, x /∈B} [4]

1.1.2 FUNDAMENTAL PROPERTIES OF CRISP SETS

For two sets A and B and universal set X,

• Commutative property:

A ∪B = B ∪ A [4]

A ∩B = B ∩ A [4]

• Associative property:

(A ∪B) ∪ C = A ∪ (B ∪ C) [4]

(A ∩B) ∩ C = A ∩ (B ∩ C) [4]

• Distributive property:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) [4]

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) [4]

• Idempotent law:

A ∪ A = A [4]

A ∩ A = A [4]

• Absorption law:

A ∪ (A ∩B) = A [4]

A ∩ (A ∪B) = A [4]
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• Identity law(∅ - identity element)

A∪∅ = A[4]

A∩∅ = ∅ [4]

• De Morgan’s law :

(A ∩B)′ = A′ ∪B′ [4]

(A ∪B)′ = A′ ∩B′ [4]



Chapter 2

FUZZY SETS

2.1 BASIC DEFINITIONS

(The word “Fuzzy” means vagueness or ambiguity)

Let X be a universal set. If X is a collection of objects denoted commonly by

x, then a fuzzy set A in X is a set of ordered pairs:

A={(x,µA(x)):x∈X} [4]

Where µA(x) [or A(x)] is called the membership function or grade of mem-

bership (also degree of compatibility or degree of truth) of x in A that maps X to

[0,1]. [4]

(if A is a classical subset ofX then µA(x) is 1 when x ∈Aand0whenx/∈AandµA(x)

is identical to the characteristic function of a non-fuzzy set).

Elements with a zero degree of membership are normally not listed.

According to the crisp set theory, there are two groups of people in each given

realm of discourse: members (those who unquestionably belong to the group) and

non-members (those who unquestionably do not). It was insufficient in the sense

that it failed to assign the degree to which each individual belongs to a given set

8
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under consideration. It was in such a context that L A Zadeh introduced fuzzy set

theory, a generalized form of classical set theory.

Fuzzy sets are used to provide a more reasonable interpretation of linguistic

variables.

A fuzzy set is a generalization of the classic set theory that uses the membership

function to yield a number between 0 and 1, which denotes the degree to which an

item x has membership in the set A.

2.1.1 MEMBERSHIP FUNCTION

• The membership function serves as the focal point of fuzzy sets.

• Each element in the domain has a degree of membership that is connected to

the associated fuzzy set using the function.

• A membership function serves as another way to describe two-valued sets.

• Consider the domain X of floating-point values in the range [0,100], for in-

stance.

Defining the crisp set A ⊂ X of the floating- numbers in the range [10,50] [3]

The figure given below is the illustration of Membership function for Two-Valued
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Sets.

All membership functions must satisfy the following constraints:

1. It must have a 0 and 1 boundary on the bottom and top, respectively.

2. A membership function must have a [0,1] range.

3. µA(x) must be unique for each x∈X.

In other words, a single element cannot translate to several degrees of mem-

bership for a single fuzzy set.

2.1.2 EXAMPLES OF FUZZY SETS

1. Let X={a, b, c, d, e}

Let A be the fuzzy set of “smart” students, where “smart” is fuzzy term.

A={(a,0.4),(b,0.5),(c,1),(d,0.9),(e,0.8)} Here A indicates that the smartness

of a is 0.4 ans so on.
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2. The graph demonstrates how one may use a 20 degree threshold as a starting

point for assigning fuzzy values to various temperatures.

it is given by;

10 degrees = {1 c,0 w,0 h}

20 degrees = {0.5 c,1 w,0.5 h}

30 degrees = {0.15 c,0.15 w,0.85 h}

3. Take a look at the figure below. A person who is 5’5” tall is considered to be

a member of the ”medium” person category with a membership value of 1, as

well as the ”short” and ”tall” categories with a value of 0.25.
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4. Let X= R, the set of all real numbers be the universal set under consideration.

Then, A={(x,µ(x)(x)):x∈X}

i.e.,A= {real number near 0};where,

µA(x)=
1

1+x
is a fuzzy set on X.

2.1.3 CRISP SETS AND FUZZY SETS

• Crisp sets are defined by crisp boundaries.

• Fuzzy sets are defined by indeterminate boundaries.

• Crisp sets contain the precise location of the set boundaries.

• In fuzzy sets, there exists an uncertainty about the set boundaries.

• Crisp sets has exactly one membership function.
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• Fuzzy sets can have an infinite number of membership functions to

represent it.

• An element in a crisp set is either a member of the set or it is not.

• Items in Fuzzy sets allow items to only be partially included in the set.

• Crisp sets describe values as either 1 or 0, as they are of the YES or NO type

• Fuzzy sets are MORE or LESS type and thus defines values between

0 and 1.

2.1.4 OPERATIONS ON FUZZY SETS

Given X to be the universe of discourse and A and B to be fuzzy sets with µA(x)

and µB(x) are their respective membership function, the fuzzy set operations are as

follows:

• Standard Fuzzy Union of A and B, is defined by

µA∪B(x) = max [µA(x), µB(x) ] [4]

• Standard Fuzzy Intersection of A and B, denoted as A∪B, is defined by

µA∩B(x) = min [µA(x), µB(x) ] [4]

• Standard Fuzzy Complement (negation) of A, denoted as A, is defined

by µĀ (x) = 1- µA(x) [4]

The figure given below is the illustration of standard fuzzy operations:Union,

Intersection and compliment
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Example: Let X= {x1, x2, x3}, A = {(x1, 0), (x2, 0.5), (x3, 0.7)} and

B = {(x1, 0.3), (x2, 0.5), (x3, 0.6)}

Then,

• A ∪B= {(x1, 0.3), (x2, 0.5), (x3, 0.7)}

• A ∩B={ (x1, 0), (x2, 0.5), (x3, 0.6)}

• Ā = {(x1, 1), (x2, 0.5), (x3, 0.3)}

• Fuzzy sets follow the same properties of crisp sets except for the Law of Contradiction

and the Law of Excluded Middle.

That is,

A∩Ā ̸=φ [Law of Contradiction]

A∪Ā ̸=X[Law of Excluded Middle]
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2.2 T-CONORM AND T-NORM

2.2.1 T-CONORM (fuzzy union)

The general fuzzy union of two fuzzy sets A and B is given by a function

U : [0,1] × [0,1]−→ [0, 1][3]

thatsatisfiesatleastthefollowingaxiomsforalla,b,c∈ [0, 1]are;

• Axiom-1: U(a, 0) = a (boundary condition) [3]

• Axiom-2: if a<a’andb<b’thenU(a,b) ≤U(a’,b’)(monotonicity)[3]

• Axiom-3:U(a, b)=U(b, a) (commutativity) [3]

• Axiom-4: U(U(a, b),c) = U (a, U(b,c))(associativity)[3]

These axioms form the Axiomatic Skeleton for fuzzy union.

The other requirements for fuzzy unions are expressed by the following axioms:

• Axiom− 5: U is a continuous function. [3]

• Axiom− 6:U(a, a) =a (idempotency) [3]

Examples: t-conorms that are frequently used as fuzzy union (each defined for

all a, b ∈ [0, 1])are;

1. Standard Union: U(a, b)= max (a, b) [3]
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Function U satisfies Axiom 5 and Axiom 6 along with the axiomatic skeleton.

2. Algebraic Sum: U(a, b) = a + b - ab

Function U satisfy Axiom 5, i.e, it is continuous but not idempotent (Axiom

6)

3. Bounded Sum: U(a, b) = min (1, a + b) [3]

Function U is continuous but it is not idempotent (Axiom 6)

4. Drastic Union: U(a, b) =


a; when b = 0

b; when a = 0

1; otherwise

[3]

otherwise U is a continuous function (Axiom 5) but it’s not idempotent (Axiom6)
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2.2.2 T-NORM (fuzzy intersection)

The fuzzy intersection t-norm is defined by a function, I: [0,1] × [0,1]−→ [0, 1]that

satisfies at least the following axioms for all a, b, c ∈ [0, 1]are; [3]

• Axiom-1: I(a, 0) = 0(boundary condition) [3]

• Axiom-2: if a ¡ a′ and b ¡b′ then I(a, b) ≤I(a’,b’)(monotonicity)[3]

• Axiom-3:I(a, b)=I(b, a) (commutativity) [3]

• Axiom-4: I(I(a, b),c) = I (a, I(b,c)) (associativity) [3]

These axioms form the Axiomatic frame for fuzzy intersection.

The other requirements for fuzzy intersection are expressed by the following

axioms:

• Axiom− 5: Iis a continuous function. [3]

• Axiom− 6:I(a, a) =a (idempotency) [3]

Examples: t-conorms that are frequently used as fuzzy intersection (each de-

fined for all a, b ∈ [0, 1])are;

1. Standard intersection: I(a, b)= mix (a, b)
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Function I satisfies all the six axiomatic requirements.

2. Algebraic product: I(a, b) = ab

Function I satisfy Axiom 5, i.e it is continuous but not idempotent (Axiom

6)

3. Bounded difference: I(a, b) = max (0, a + b-1)

Function I is continuous (Axiom 5) but it is not idempotent (Axiom 6)

4. Drastic intersection: I(a, b) =


a; when b = 1

b; when a = 1

0; otherwise

[3]

otherwise I is a continuous function (Axiom 5) but it is not idempotent (Axiom6)
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2.3 FUZZY COMPLEMENTS

The fuzzy complement is defined as a function C:[0,1]−→ [0, 1][3],which satisfies the

following axioms.To produce meaningful fuzzy complements,function C must satisfy

at least the following two axiomatic requirements,

• Axiom 1:C(0) = 1 and C(1) = 0 (boundary condition) [3]

• Axiom 2: if a¡b, and a,b ∈ [0, 1]thenC(a) ≥C(b)(monotonicity)[3]

The violation of either of these axioms would result in addition of some functions

totally unacceptable as fuzzy complements. Hence Axiom 1 and Axiom 2 are known

as the Axiomatic frames for fuzzy complements.

Certain additional desirable requirements listed as axioms of fuzzy complements

is given by,

• Axiom 3:C is continuous function. [3]

• Axiom 4: C is involute. i.e.,C(C(a)) = a,∀a∈ [0, 1][3]
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EXAMPLE 1: Standard function µĀ (x) = 1- µA(x) satisfies all the four

axioms.

Above figure represents the standard fuzzy compliment

EXAMPLE 2: The function C(a) =

1 for a ≤ t

0 for a > t
satisfies the axioms only.

EXAMPLE 3: The function C(a) =0.5(1+ cosπa) satisfies axiomatic skeleton
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and

axiom 3. Since C(0,75) = 0.5, the value of C(0.33) for a = 0.33 is not equal to 0.33.

Therefore axiom 4 does not follow now.

EXAMPLE 4: Yager’s function Cw(a) = (1− aw)1/w

where w∈ (−1,∞)satisfies all the axioms.



CHAPTER 2. FUZZY SETS 22

2.4 FUZZY SET - CHARACTERISTICS

The main characteristic of membership function include normality, height, sup-

port, core, cut, unimodality and cardinality.

NORMALITY OF A: A fuzzy set A is normal if that set has an element with a

membership function of 1. That is, ∃x∈ A;µA(x) = 1 [2]

Height of A: The height of a fuzzy set A is defined as the supremum of the

membership value of membership function [2]. That is;

Height(A)0rH(A)= sup{µA(x) ; x∈X}[2]

Support of A: The support of fuzzy set A is the set of all elements in the

universal of discourse, X, that belongs to A with non-zero membership value [2]. It

is denoted by supportA or S(A), it is given by,

S(A)= {x∈X:µA(x) >0 }

Example: Let X ={ x1, x2, x3, x4 } and A = {(x1, 0.2), (x2, 0.5), (x3, 0), (x4, 1)}

Here, S(A) = {x1, X2, x4}.

Core of A: Let A be a fuzzy set on X. The core of A is the set of all elements

in the domain that belongs to A with membership degree 1 [2].

Core(A) = {x∈X:µA(x) = 1 }

Example: Let X ={ x1, x2, x3, x4 } and A = {(x1, 0.2), (x2, 0.5), (x3, 0), (x4, 1)}

Here, Core(A) = {x4} [2].

Note: Fuzzy singletons are fuzzy sets with muA(x) = 1 as their support, also
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known as fuzzy single points.

α cut strong α Cut: Let A be a fuzzy set on X and α ∈ [0, 1].[3]

Then α cut of A denoted as αA, is defined by

αA= {x∈X:µA(x) ≥α }

The strong α cut of A, denoted as α + A , is defined by

α + A = {x∈X:µA(x) >α } [3]

Example: Let X= { x1, x2, x3 } and A = {(x1, 0), (x2, 0.3), (x3, 0.7)} some α

cuts are,

0A ={x∈X:µA(x) ≥ 0} = {x1, x2, x3 }

0.2A ={x∈X:µA(x) ≥ 0.2} = {x1, x3 }

Some strong α cuts are,

0 + A = {x∈X:µA(x) >0 } = { x2, x3 }

0.3 + A ={x∈X:µA(x) >0.3 } ={ x3 }.

Unimodality: If a fuzzy set’s membership function only has one possible value,

it is said to be unimodal. In other words, the function has a single maximum.

Cardinality: The cardinality of fuzzy set A, for a finite domain X is defined as,

Card(A) =
∑

x∈X µA(x) [3]

Normalization: A fuzzy set is normalized by dividing the membership function

by the height of the fuzzy set. That is;

Normalized(A) = µA(x)
Height(x)

Level set
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Let A be a fuzzy set on X.

The level set of A denoted by ∆(A) is defined as the set of all levels α ∈

[0, 1],which represents the distinctα cuts of A.

∆(A)= {α ∈ [0, 1] :µA(x) = α, for some x∈X}[3]

Example: Let X ={ x1, x2, x3 } and A = {(x1, 0.1), (x2, 0.9), (x3, 0.7)}

Then ∆(A) = { 0.1,0.7,0.9}.



Chapter 3

FUZZY LOGIC
An approach to thinking that mirrors human reasoning is fuzzy logic. Fuzzy logic

uses an approach that mimics how humans make decisions, which entails considering

all possible outcomes between the digital values YES and NO. It is a general term

for the idea of incomplete truth.

Based on the whim of relative graded membership and drawing inspiration from hu-

man perception and comprehension, fuzzy logic is a theory. In 1965, Lotfi A. Zadeh

released his seminal study on fuzzy sets. Information derived through computational

perception and understanding, which is ambiguous, imprecise, vague, partially true,

or lacking distinct limits, can be dealt with using fuzzy logic. Fuzzy logic enables

the incorporation of hazy human judgments into computational issues. Addition-

ally, it offers a useful method for resolving issues with various criteria and better

option evaluation. New computing methods based on fuzzy logic can be used in

the development of intelligent systems for decision making, identification, pattern

recognition, optimization, and control[3] .

features that differentiate fuzzy logic and traditional logical system is given by:

1. A suggestion in a two-valued logical system is either true or false. A suggestion

25
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in a multi-valued logical system can be either true or false, or it might have a middle

ground truth value that could be a component of either a limited or infinite truth

value set T . The truth values in fuzzy logic are permitted to span the fuzzy subsets

of the set T . A truth value in fuzzy logic, such as ”very true,” for instance, may be

construed as a fuzzy subset of the unit interval if T is the unit interval. In this way,

a fuzzy truth value could be thought of as a vague description of a numerical truth

value.

2. The indication of a predicate in two-valued logic is required to be a non-fuzzy

subset of the discourse universe, and this constraint forces predicates to be crisp.

In fuzzy logic, the predicates can be either sharp—for example, ”mortal,” ”even,”

and ”father of”—or more widely fuzzy, such as ”ill,” ”tired,” ”large,” ”tall,” ”much

heavier,” and ”friend of.”

3. Only two quantifiers—”all” and ”some”—are permitted in logics with two and

multiple values. The use of fuzzy quantifiers, such as ”most,” ”many,” ”several,”

”few,” ”a lot of,” ”often,” ”occasionally,” and so on, is also permitted by fuzzy logic.

The cardinality of one or more fuzzy or non-fuzzy sets can be loosely described by

such quantifiers, which can be thought of as fuzzy numbers. A fuzzy quantifier can

be thought of from this angle as a second-order fuzzy predicate. Based on this view,

fuzzy quantifiers may be used to represent the meaning of propositions containing

fuzzy probabilities and thereby make it possible to manipulate probabilities within

fuzzy logic [3].

4. Using ”not,” ”very,” ”more or less,” ”extremely,” ”slightly,” ”much,” ”a little,”
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and other similar expressions, fuzzy logic offers a way to convey the meaning of both

non-fuzzy and fuzzy predicate-modifiers. Consequently, a system for computing with

linguistic variables—i.e., variables whose values are words or sentences in a natural

or synthetic language—is created. For instance, the linguistic variable ”Age” is used

when its values are considered to be ”young,” ”old,” ”very young,” ”not very old,”

and so on.

5. In two-valued logical systems, a statement can be qualified by adding a truth

value—”true” or ”false”—a modal operator, like ”possible” or ”necessary,” and an

intentional operator, like ”know” or ”believe.”

EXAMPLE: Figure given below shows the difference between Boolean logic

and Fuzzy logic.



Chapter 4

APPLICATIONS OF FUZZY SET

THEORY
Fuzzy set theory has applications in many fields, including robotics, artificial

intelligence, computer science, control engineering, decision theory, expert systems,

logic, management science, and operations research.

Fuzzy logic has a wide range of uses, including facial pattern recognition, air condi-

tioners, washing machines, vacuum cleaners, transmission systems, control of subway

systems, unmanned helicopters, knowledge-based power system optimization sys-

tems, weather forecasting systems, models for new product pricing or project risk

assessment, medical diagnosis and treatment plans, and stock trading. In a variety

of industries, including control systems engineering, image processing, power en-

gineering, industrial automation, robotics, consumer electronics, and optimization,

fuzzy logic has been applied with success. Long-dormant scientific domains have

recently regained their vibrancy thanks to this area of mathematics. The kinds of

applications of fuzzy logic have undergone a major transformation over the last two

decades.Non engineering applications have grown in number, visibility and impor-

28
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tance. Among such applications are applications in medicine, social sciences, policy

sciences, fraud detection systems, assessment of credit-worthiness systems and eco-

nomics [2].

In this chapter we intend to give description on application of fuzzy logic in medical

diagnosis.

4.1 MEDICAL DIAGNOSIS

One industry where the use of fuzzy set theory was identified relatively early, in the

middle of the 1970s, was medicine. The ambiguity present in the process of disease

diagnosis has repeatedly been the subject of applications of fuzzy set theory in this

discipline. We look at some fundamental problems with these applications in this

section. New medical technology have expanded the amount of information avail-

able to doctors, making it more challenging to categorize various sets of symptoms

under a single name and choose the best course of treatment. Even the same disease

might manifest itself remarkably differently in various persons and at various dis-

ease stages. Additionally, one symptom may be indicative of multiple diseases, and

the coexistence of multiple diseases in one patient may alter the typical symptom

pattern for any one of them. The most accurate and helpful explanations of illness

entities frequently make use of linguistic expressions that are utterly ambiguous.

One source of ambiguity and uncertainty in the diagnostic process is the medical

knowledge of the association between symptoms and diseases, while another is the
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medical knowledge of the patient’s condition. The patient’s prior history, physical

examination, lab test results, and other investigative techniques like X-rays and ul-

trasonics are often how the doctor learns about the patient. The degree of accuracy

in the information offered by each of these sources varies. The patient may pro-

vide a subjective, inflated, understated, or incomplete previous history. During the

physical examination, mistakes could be made and symptoms could go unnoticed.

Laboratory data are frequently imprecise, and the precise line dividing normal from

diseased conditions is frequently ambiguous. The results of X-rays and other re-

lated procedures must be correctly interpreted. As a result, the doctor can only

determine the patient’s condition and symptoms with a certain amount of accu-

racy.Despite the ambiguity around the patient’s reported symptoms and the lack of

clarity surrounding the symptoms’ relationship to a specific condition, it is impera-

tive that the doctor choose the diagnostic classification that suggests the best course

of treatment. Textbf fuzzy sets have been used to attempt to mimic this challeng-

ing and crucial medical diagnosis process in the hopes of better understanding and

teaching it. The extent to which each model tries to address various complicating

factors in medical diagnosis, such as the significance of symptoms, the various symp-

tom patterns associated with various disease stages, relationships between diseases

themselves, and the stages of hypothesis formation, preliminary diagnosis, and fi-

nal diagnosis within the diagnostic process, varies. These models also serve as the

foundation for computerized medical expert systems, which are typically created to

help doctors diagnose a certain class of disorders. Numerous methods for modeling
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the diagnostic process have made use of the fuzzy set architecture. The doctor’s

medical expertise is shown as a hazy association between symptoms and diseases in

Sanchez’s [1979] approach. Thus, given the fuzzy set A of the symptoms observed

in the patient and the fuzzy relation R representing the medical knowledge that

relates the symptoms in set S to the diseases in set D, then the fuzzy set B of the

possible diseases of the patient can be inferred by means of the compositional rule

of inference[1].

B = (A ◦R)[1] (4.1)

B(d) = maxs ∈ S[min(A(s), R(s, d)]

for each d ∈ D. The membership grades of observed symptoms in fuzzy set

A may represent the degree of possibility of the presence of the symptom or its

rigorousness. The degrees of plausibility with which we can associate each pertinent

diagnostic label with the patient are indicated by the membership grades in the fuzzy

set B. The biggest relationship should be formed between the fuzzy relation Q on

the set of patients and symptoms and the fuzzy relation R of medical knowledge.

Relation Q on the set P of patients and S of symptoms and the fuzzy relation T on

the sets P of patients and D of diseases, then

T = (Q ◦R)[1] (4.2)
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Thus, relations Q and T may represent, respectively, the symptoms that were

present and diagnoses consequently made for a number of known cases.The relation-

ship between symptoms and diseases that was established in the earlier diagnosis

can be specified using the gathered medical expertise by solving the fuzzy relation

equation (4.2) for R. In order to avoid finding a connection that is more precise than

our information ensures, the maximal solution to (4.2) must be chosen for R. This

may result in instances when R indicates a stronger correlation between symptoms

and disease than is actually the case. It could be essential to interpret the outcomes

of applying relation R to a particular set of symptoms as a diagnostic hypothesis

rather than as a finalized diagnosis.Applications of fuzzy set theory in medicine are

by no means restricted to medical diagnosis. Other applications involve, for example,

fuzzy controllers for various medical devices, fuzzy pattern recognition and image

processing for analysis of X-ray images and other visual data, and fuzzy decision

making for determining appropriate therapies [1].



CONCLUSION

In this project I studied about Fuzzy sets which have great utility in simplified

representation of uncertainty and its applications in various fields. It has been

used in numerous branches of mathematics, including topology, analysis, clustering,

control theory, graph theory, measure theory, and algebra.

This project helped me to learn foundations of Fuzzy sets which had been helpful in

representing vague concepts expressed in natural language. The wide applicability

of this concept is impressive enough to have a future endeavour on this project.
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