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Introduction

A key component of mathematical sciences is widely regarded as abstract algebra. It deals

with the investigation of algebraic entities such groups, rings, vector spaces, and algebras.

With two binary operations that enjoy various features, the ”semiring” algebraic structure

is the most generalised. It is frequently regarded as a fundamental structure in abstract al-

gebra, which defines the boundaries of the surrounding mathematical universe. Dedekind,

Macaulay, and Krull began some of the implicit work in the creation of the semiring the-

ory, but it was Vandiver who first proposed the idea of semirings openly. Since that time,

numerous scholars have investigated various aspects of semirings and demonstrated that

they have useful applications in the fields of theoretical computer science and mathemat-

ical sciences. Early in the 1950s, extensive research into the algebraic theory of semirings

began, which sped up the development of the theory and its applications. In the areas

of practical mathematics such as the theories of automata, formal languages, optimisa-

tion, and graph theory, a semiring naturally develops. The idea that a universal algebra

with two associative binary operations, addition (often represented by +) and multipli-

cation (typically denoted by . or by concatenation), where one of them distributes over

the other, is called a semiring was first put forth by Vandiver in 1934. The necessity of

neutral elements is relaxed by this definition. Semiring is a structure that doesn’t re-

quire a 0 or 1 to exist, according to certain authors. As a result, the comparison between

group and semigroup and ring and semiring works more effectively. These authors
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frequently use the term ”rig” to refer to the idea here. The original joke here was that

rigs are just rings without the negative elements. In a similar way, ”rng” can also refer

to a ring devoid of a multiplicative identity. As long as the concept of the derivative has

existed, there have been fundamental and significant relationships between the operations

of differentiation and addition and multiplication of functions. The study of algebraic

structures with a finite number of derivations—linear functions that adhere to the Leibniz

product rule—is the subject of differential algebra. Old and important in the integration

of analysis, algebraic geometry, and algebra is The idea of the ring with derivation (i.e.

with differentiation) plays an important role in algebra, algebraic geometry and integra-

tion of analysis. Although it was started years ago, the subject of ring derivations didn’t

really catch on until Posner published two extremely eye-catching findings on derivations

in prime rings in 1957. Additionally, the concept of derivation has been generalised in

a number of ways, including Jordan derivation, generalised Jordan derivation, etc. It

was discovered in the 1940s that the Picard-Vessiot theory of ordinary linear differential

equations can be applied to the Galois theory of algebraic equations. The classic texts on

differential algebra were written by Ritt in 1950 and Kolchin in 1973. Numerous studies

on derivations in rings, Lie rings, skew polynomial rings, and other structures have been

conducted over the past few decades. An attempt has been made to provide insight into

the theory and applications of semirings in this work.

The first chapter introduces the reader with a collection of notations and ideas in the form

of definitions which can be used as ready reference for easy understanding of the subse-

quent topics. Starting from the idea of groups we finally reach the idea of semirings which

we need throughout this paper.The second chapter gives a brief idea about derivations
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on rings and semirings and some lemmas relating to it. The third chapter gives the link

between semiring theory and graph theory. Through this chapter we get an algorithm to

find minimum path in a network. The last chapter helps us to relate the homomorphisms

and derivations on semirings.



Chapter 1

SEMIRINGS

1.1 Groups

1.1. GROUP[2] (G,∗) is referred to as a group if G is a non-empty set and “∗” is the

binary operation defined on G such that the following laws or axioms are true.

(1)closure law

if for all x, y ∈ G, x ∗ y ∈ G

(2)Associative law

if x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G

(3)Identity element

if there is an element e ∈ G such that x ∗ e = e ∗ x = x for all x ∈ G; where e is the identity element

(4)Inverse law

if for each x ∈ G, there exists an element y ∈ G such that x ∗ y = y ∗ x = e, where y = x−1 is the

inverse element of x

Example 1.1. The algebraic structure started by natural numbers under the addition

operation is denoted by the symbol (N,+). However, because it does not adhere to the

inverse law, (N,+) is not a group. For instance, the inverse element of 3 ∈ N, given -3 in

N with regard to +, does not exist.

4



CHAPTER 1. SEMIRINGS 5

1.2. ABELIAN GROUP If (G,∗ ) has a binary operation that fulfils the commutative

law, i.e., a ∗ b = b ∗ a for all a, b in G, then it is said to be an abelian group or

a commutative group. A ”non-abelian group” or ”non-commutative group” is one in

which the group operation is not commutative. Under addition, Z,Q,R and C are abelian

groups.

Example 1.2. (Z, +)

Here, the identity is the additive identity, which is 0. Because a+ a−1 = a + (-a) = a-a

= 0, we have a−1 = a for every integer, a. Due to the fact that the sum of two numbers

is always an integer, the integers under addition are finally closed. The integers with the

addition operation (Z, +) thus form a group. Due to the fact that a + b = b + a for any

a, b in Z, this group is also abelian.

Example 1.3. (Z5, +)

The group of integers modulo 5 falls as a group under the addition operation. If we add

each number by adding the congruence class it belongs to, we see that Z5 = {0, 1, 2, 3, 4}.

Any two numbers added together and reduced mod 5 will always equal to 0, 1, 2, 3 or 4

and hence the group is closed. The identity is 0 just like any group under addition and

every element has a unique inverse. So it is a group and eventually an abelian group. Its

group table is given below:
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+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

1.3. FINITE GROUP A group G is referred to as a finite group if it only has a finite

number of elements; otherwise, it is referred to as an infinite group. The order of a group,

O(G), is the total number of elements in a finite group G. In other words, if G has n

elements, then O(G) = n.

Example 1.4. (Z5, +) is a finite group of order 5 because it has elements 0, 1, 2, 3, and

4. But (R, +) is an infinite group.

1.2 Semigroups

1.4. SEMIGROUP The set G is referred to as a semi-closed group or semi group if

only the closure law and associative law are satisfied. Consequently, a semigroup is an

algebraic structure made up of a set and an internal binary associative operation on it.

Formally, associativity is defined as (x. y). z = x. (y. z) for all x, y, and z in the semi-

group. Without needing the existence of an identity element or inverses, semigroups can

be thought of as a generalisation of groups or as a specific instance of magmas, where the

operation is associative. Matrix multiplication is a well-known example of an operation
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that is associative but non-commutative, similar to how in groups or magmas the semi-

group operation need not be commutative, so x.y need not equal to y.x. In the event that

the semigroup operation is commutative, the semigroup is referred to as a commutative

semigroup or, less frequently than in the similar case of groups, an abelian semigroup.

A monoid is an algebraic structure that is in the transition zone between semigroups and

groups. It is a semigroup with an identity element and, as such, satisfies all but one of

the group’s axioms: the absence of inverses. In contrast to non-negative integers, which

form a monoid, positive integers with addition form a commutative semigroup that is not

a monoid. By simply including an identity element, a semigroup without identity can be

converted into a monoid. As a result, rather than in group theory, monoids are investigated

in the theory of semigroups.

Example 1.5. The set of positive integers under addition is a semigroup. (This becomes

a monoid when 0 is added.)

1.5. SUBGROUP We say that a subset H of a group G is a subgroup of G if it is

closed under the binary operation of G and if H is itself a group with the induced operation

from G. G is the improper subgroup of G if G is a group. The remaining groupings are all

proper subgroups. The trivial subgroup of G is the subgroup {e}. The remaining subgroups

are all nontrivial.

Example 1.6. (Z, +) is a proper subgroup of (R, +)

The group table of Klein 4-group and all its subgroups and are given below:

Klein 4-group V is given by V={e, a, b, c} such that
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a.a=e a.b=c

b.b=e b.c=a

c.c=e a.c=b

• e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Hence subgroups of Klein 4-groups are

H1 ={e,a,b,c}

H2 ={e}

H3 ={e,a}

H4 ={e,b}

H5 ={e,c}

1.6. CYCLIC GROUP [2] We refer to a group G as a cyclic group if it has an element

a that generates G when stated as < a >= G. In some circumstances, groups of infinite

orders can be cyclic, and cyclic groups can have more than one generator. Examples will

clearly demonstrate this.

Example 1.7. When we went back to (Z10, +), we noticed that < 2 > only generated

a subgroup of the group, not the entire group. Consider another element of this group.

Observe that < 7 >= {7, 4, 1, 8, 5, 2, 9, 6, 3} = Z10 is obtained by continually adding 7 to

itself and reducing mod 10.

Example 1.8. Remember that < 1 >=Z. Therefore, since 1 is a generator of Z. Hence
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(Z, +) must be cyclic. Take note that Z is of infinite order. As a result, groups with

infinite order can truly be cyclic.

1.3 Rings

1.7. RING [2]A set R is a ring if it has two binary operations addition) and multiplica-

tion and it satisfy the given three sets of axioms, called the ring axioms

1. R under addition is an abelian group:

* (a + b) + c = a + (b + c) for all a, b, c in R (that is, + is associative).

* a + b = b + a for all a, b in R (that is, + is commutative).

* There is an element 0 in R such that a + 0 = a for all a in R (that is, 0 is the additive

identity).

* For each a in R there exists −a in R such that a + (−a) = 0 (that is, -a is the additive

inverse of a).

2. Multiplication is associative

3. Multiplication is distributive with respect to addition. That is for all a,b,c in R,

* a · (b + c) = (a · b) + (a · c) (left distributive law).

* (b + c) · a = (b · a) + (c · a) (right distributive law).

Example 1.9. <Z,+, . > is a ring.

Example 1.10. The set of natural numbers with the usual operations is not a ring, because

it is not even a group as all the elements are not invertible with respect to addition .In

order to enlarge it to a ring, include negative numbers to produce the ring of integers.
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1.8. COMMUTATIVE RING Ring multiplication does not have to be commutative;

ab need not always equal ba. But ring addition is commutative. Commutative rings,

such as the ring of integers, are rings that also meet commutativity for multiplication.

Example 1.11. 2 Z with usual addition and multiplication is a commutative ring.

1.9. FIELD A division ring (skew field) is a ring such that every non-zero element is

a unit( has multiplicative inverse). A commutative division ring is a field and a non-

commutative division ring is a strictly skew field.

Example 1.12. The set of rational numbers is a field since every non-zero element has

a multiplicative inverse.

1.10. SUBRING A subring of a ring is defined as the subset of the ring that is a ring

under induced operations from the whole ring.

Example 1.13. The ring of integers is a subring of the field of real numbers.

1.4 Semirings

1.11. SEMIRINGS A non-empty set S combined with the two binary operations + and

. , such that the two distributive laws are satisfied, constitutes a semiring (S, +, .). That

is a semiring (S, +,. ) is a non-empty set S along with two binary operations, + and .

where

1. (S, +) is a commutative monoid with identity element 0

2. (S, .) is a monoid with identity element 1

3. a. (b + c) = a. b + a .c and (b + c). a = b. a + c. a for all a,b,c in S
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Example 1.14. The set of all positive integers with usual addition and multiplication is

a semiring.

1.12. COMMUTATIVE SEMIRINGS [1] If (S, +) is a commutative semigroup, then

the semiring (S, +, . ) is said to be additively commutative. If (S, .) is a commutative

semigroup, then a semiring (S, +, .) is said to be multiplicatively commutative. If (S, +)

and (S, . ) are both commutative, then it is said to be commutative.

Example 1.15. The set of natural numbers including zero under ordinary addition and

multiplication is a commutative semiring.

If the semiring (S, +, . ) has a ’0’ element in S such that x + 0 = x = 0 + x for

all x in S, then it is said to be a semiring with zero. If there is 1 in S such that 1 . x

= x = x . 1, for all x in S, then a semiring (S, +, . ) is said to have an identity element 1.

1.13. SUBSEMIRING [1] Let a semiring be (S, +, . ). Any nonempty subset A of S

that contains ’0’ and ’1’ and is closed under the operations ’+’ and ’.’ is referred to as a

subsemiring.

Example 1.16.

a 0

0 d

 is the subsemiring of the set of all matrices

a b

c d

 with integer

entries.



Chapter 2

DERIVATIONS ON SEMIRINGS

2.1 Derivations on rings

[1]Suppose R is an associative ring. Then a mapping d : R → R is called a derivation if

i. d(x + y) = d(x) + d(y)

ii. d(xy) = d(x) y + x d(y) ∀ x, y in R

Example 2.1. Let R be a ring of 2×2 matrices.

Define d:R ⇒ R by

d

p q

r s

 =

0 −q

r 0



Then d is a nonzero derivation on R since we have

d

 x y

z w

 +

a b

c d

  = d

x+ a y + b

z + c w + d

 =

 0 −(y + b)

z + c 0



12
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d

x y

z w

 + d

a b

c d

 =

0 −y

z 0

 +

0 −b

c 0

 =

 0 −(y + b)

z + c 0



2.1. INNER DERIVATION [1]In specifically, if a ∈ R is fixed, the mapping Ia : R ⇒

R provided by Ia(x) = [x, a] = xa − ax is a derivation that is referred to as an inner

derivation.

Example 2.2. We can start with the ring of square matrices over a field, or Mn(F ). Here

n is the size of the matrices and F is the field. The Leibniz rule is satisfied by a linear

map D :Mn(F )⇒Mn(F ), which is a derivation on this matrix ring given by:

D(AB)=D(A) B+A D(B)

A derivation that may be ”generated” by a fixed matrix X using the following formula is

referred to as an inner derivation in this instance:

DX(A) = XA−AX

Where A is any Mn(F ) matrix. Because it is defined in terms of the commutator

operation [X,A] = XA−AX, which gauges how much X fails to commute with A, this is

known as an inner derivation.

2.2. GENERALIZED DERIVATION [1] If F (xy) = F (x) y + x d(y) for all x, y

in R and F(x+y)= F(x) + F(y), then the additive function F : R ⇒ R is known as a

generalized derivation and has an associated derivation d on R.

Example 2.3. Given R =

x y

0 z

 where x,y,z in Z.

Suppose m to be a fixed non zero element in Z and define F : R ⇒ R by

F

x y

0 z

 =

0 mx+mz

0 0


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Here we have F to be a generalized derivation having associated derivation d such that,

d

x y

0 z

 =

0 mx−mz

0 0



2.2 Derivations on semirings

[1] Suppose (S, +, ·) be a semiring. A derivation on S is a map D : S → S satisfying

the following conditions

1. D(x + y) = D(x) + D(y), for all x, y in S.

2. D(xy) = D(x)y + xD(y) for all x, y in S.

Example 2.4. For a semiring S, the set S[x] of polynomials under usual addition and

multiplication of polynomials is a semiring. Taking f(x) = a0+a1x+ ....+anx
n from S[x]

and defining the map D: S ⇒ S by

D(f(x)) = a1 + 2a2x+ ......nanx
(n−1)

gives us D to be a derivation on S[x].

Lemma 2.1. [1] On an additively commutative semiring (S, +, .), sum of two derivations

is again a derivation.

Proof. Let the additively commutative semiring S has the derivations D1 and D2.

Then,

(D1 +D2)(a + b)

= D1(a+ b) +D2(a+ b)
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=D1(a) +D1(b) +D2(a) +D2(b)

=(D1 +D2)(a) + ((D1 +D2)( b)

Also,

(D1 +D2)(ab)

= D1(ab) +D2(ab)

= D1(a)b+ aD1(b) +D2(a)b+ aD2(b)

=D1(a)b+D2(a)b+ aD1(b) + aD2(b)

=(D1(a) +D2(a))b+ a(D1(b) +D2(b))

=(D1 +D2)(a)b+ a(D1 +D2)(b)

■

Lemma 2.2. [1] Product of two derivations in general need not be a derivation.

Proof. Additivity can be proved easily here. But,

D1.D2(ab) =D1(D2(ab))

=D1(D2(a)b + aD2(b))

=D1(D2(a)b) + D1(aD2(b))

=D1(D2(a))b + D2(a) D1(b) + D1(a) D2(b) + aD1(D2(b))

=(D1.D2(a))b + a(D1.D2)(b) +D2(a) D1(b) + D1(a) D2(b)

̸=(D1.D2)(a)b + a(D1.D2)(b)

■



Chapter 3

SEMIRINGS AND GRAPHS

3.1 Construction of semirings

Here we are going to deal with a new semiring structure known as the semiring of graphs,

that is semirings made on graphs. This approach will help us to solve artificial network

problems by fusing algebraic theory and graph theory in view of semirings. First of all

we will introduce ∪, ∩, ∇ called union, intersection and join, which are the algebraic

operations of graphs. Then we have the structures (S,∪,∩) and (S,∪,∇) to be the semirings

where S is given as a set of simple undirected graphs.

A semiring is typically described as a non-empty set S plus two binary operations, addition

and multiplication, indicated by (S, +, .), where addition and multiplication are coupled

by distributivity and (S, +) and (S, .), respectively, are monoid and semigroup. Here,

we limit ourselves to Vandiver’s formal definition of semirings, which omits the necessity

of neutral elements and the absorption feature. For our purposes, loops are ignored and

parallel edges linking any two vertices are merged. The set of all simple undirected graphs

will henceforth be referred to as S.

16
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Figure 3.1: A self loop to a singleton vertex

The graph G=G1∪G2=(V1∪V2,E1∪E2) is defined as the union of two graphs, G1=(V1,E1)

and G2=(V2,E2). The join of two graphs G and H results in a graph that is created by

taking the union of edge sets of both these graphs and linking each vertex of G to each

vertex of H, while ignoring self-loops and multiple edges. It is represented by the notation

G ∇H = (V (G)∪ V (H), E(G)∪E(H)∪(u, v):u ∈ V(G) and v ∈ V(H)excluding(aa: a ∈

V(G) ∩V (H).

Now we have another binary operation called intersection, which is indicated by

G=G1∩G2=(V1∩V2,E1∩E2)

It signifies the merging of similar vertices and edges of both the given graphs. On consid-

ering the set of undirected simple graphs S with the two binary operations graph union ∪

and join ∇, if the combining of the graph using these operations arise any self loops then

they are ignored. For any G1, G2 in S,

(G1∇G2) = G2 = (G1∪G2)

or

(G1∇G2) = G1 = (G1∪G2)

where G1 is taken as the subgraph of G2 or G2 as the subgraph of G1. This gives

(G1∇G2) = (G1∪G2) for all G1, G2 in S.



CHAPTER 3. SEMIRINGS AND GRAPHS 18

On the contrary, assume that they are not subgraphs of each other. Then we must have the

number of edges of G1∇G2 greater than that of G1∪G2. This gives (G1∇G2) ̸= (G1∪G2)

thus giving a contradiction. Hence we can say that for a semiring (S,∪,∇),

(G1∇G2) = (G1∪G2) iff either of the given two graphs must be a subgraph of the other.

Given three graphs G1, G2 and G3.

Figure 3.2: Illustrative graphs

Then we can see that these graphs satisfy some of the algebraic axioms which are given

below.

Figure 3.3: First one showing associativity of ∇, second and third showing distribu-
tivity of ∇ over ∪
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Theorem 3.1. [3] If S is the set of all graphs, then (S,∪,∇) is a semiring.

Proof. First of all, we need to prove that (S, ∪) is a semigroup. If we take two graphs G1,

G2 from S, we have G1∪G2 also in S. Let G3 also belongs to S. For a vertex u taken from

G1∪(G2∪G3),

u ∈ V(G1∪(G2∪G3))

⇐⇒ u∈ V(G1) ∪(V (G2) ∪V (G3))

⇐⇒ u∈ V(G1) or (u ∈ V(G2) or u ∈ V(G3))

⇐⇒ (u∈ V(G1) or u ∈ V(G2)) or u ∈ V(G3)

⇐⇒ u∈ (V(G1) ∪V (G2)) ∪V (G3)

⇐= u∈ V((G1∪G2)∪G3)

Thus we can conclude that V(G1∪(G2∪G3)) = V((G1∪G2)∪G3). Vice-versa can also be

proved. Hence we proved ∪) is a semigroup. Now similarly we can prove thatG1∇(G2∇G3)

= (G1∇G2)∇G3. Finally we prove that ∇ distributes over ∪. That is we get G1∇(G2∪G3)

= (G1∇G2)∪(G1∇G3). Hence we can conclude that (S,∪,∇) is a semiring.

■

3.2 Semirings of weighted graphs

On the above we discussed only about algebraic structures of graphs with 2-tuppled ele-

ments(edges and vertices). Now we extend it to form algebraic structures of graphs with

3-tuppled elements by adding the weight function of each edge. Here we merge the par-

allel lines and treat it as a single path thus getting a shortest path. We can denote the

set of all weighted graphs S as (V,E,W) with V as set of vertices, E as set of edges and
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W the corresponding weights. Hence we denote an empty graph as (Vϕ,Eϕ,Wϕ) with

empty set of vertices, empty set of edges and corresponding weights. Similar is the case of

(V∞,E∞,W∞) with infinte number of vertices and edges. Then we define the two binary

operations
⊕

and
⊗

on S as

(V1, E1,W1)
⊕

(V2,E2,W2) =
(V1, E1,W1) if (V1, E1,W1) ̸= (V∞,E∞,W∞)

(V2,E2,W2) otherwise

where (V1, E1,W1), (V2,E2,W2) are in S.

Also,

(V1, E1,W1)
⊗

(V2,E2,W2) = (V1
⊗

V2, E1
⊗

E2, W1
⊗

W2).

Here V1
⊗

V2 considered as the union of V1 and V2, while E1
⊗

E2 have those edges

either present in E1 or E2 or those drawn by connecting each vertex of v1 to every vertex

of V2 having edge weight 1. By doing so, we are able to merge the multiple edges and hence

the weight of the resultant edge will be minimum. W1
⊗

W2 gives us the required edge

weights in the resulting graph.

Note 3.1. [3] The set of all weighted graphs S together with the binary operations
⊕

and⊗
is a semiring.

3.3 Algorithm to get the shortest path

Consider G to be the graph required with node labels taken from an ordered idempotent

semiring (R,
⊕

,
⊗

) with
⊕

and
⊗

as maximum and minimum operations. The reason

behind the selection of nodes from an ordered idempotent semiring is to get the optimal
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path.

1. Take the source vertex s and the target vertex d of the given network G. Consider all

sequences of edges joining this s and d. Let these sequences be E, E2,....En.

2. From these sequences of edges, remove those edges with source or destination vertex

and then take the join of the edges left to obtain the graphs p1, p2,....pn.

3. Consider the union of the deleted edges and let it be p
′
.

4. Get the new graph G
′
= p1 ∪p2 ∪.....∪pn ∪p′

. Now each edge (u,v) of this graph is

labelled with (u
⊕

v) or (u
⊗

v) according to the problem.

5. Next we use Dijkstra’s algorithm to find the shortest path of G’ as it is the simplest

method to find the shortest path in a weighted graph.

For the network given below, we are going to find shortest path from source vertex 0

to target vertex 6.

Sequences of edges joining 0 and 6 are given by

Figure 3.4: G

E1 = [(0,1)(1,3)(3,4)(4,6)]
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E2 = [(0,1)(1,3)(3,5)(5,6)]

E3 = [(0,2)(2,3)(3,5)(5,6)]

E4 = [(0,2)(2,3)(3,4)(4,6)]

From each sequence, remove edges with source or target vertex. Then we get

Then union of the deleted edges is given by p’. Next we construct the optimal graph G’ by
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adding the edges (1,4),(2,5),(1,5),(2,4) to G.

Now the shortest path from 0 to 6 is given by Dijkstra’s algorithm.

The table shows the minimum weight of the path from 0 to 6 as 5 and the path as 0-1-4-6,
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by back tracking in the table.



Chapter 4

Homomorphisms and derivations

4.1 Group Homomorphism

If we are given by two groups G and G’, there are maps that relate the group structure of

one of these to the other. In such a case if the structural properties of G is known, we can

get the information about G’ also, because it is structurally just a copy of G.

4.1. HOMOMORPHISM[2] A map ϕ from a group G to a group G’ is said to be a

homomorphism if it holds the given property ∀ a,b in G.

ϕ(ab) = ϕ(a) ϕ(b)

suppose if we take any group G and G’, there will be always atleast one homomorphism

ϕ: G ⇒ G’. It is known as trivial homomorphism which is given by ϕ(g) = e’ for all

g in G.

For a group homomorphism ϕ from G to G’, if G is taken as an abelian group then G’

will also be abelian.

For a homomorphism ϕc: F ⇒ R, where F is the additive group of all functions mapping

25
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R into R , R be the additive group of real numbers and c be any real number with ϕc(f) =

f(c) for f in F, we have

Φc(f+g) = (f + g)(c)= f(c) + g(c) = ϕc(f) + ϕc(g)

This is known as the evaluation homomorphism.

4.2. PROPERTIES OF HOMOMORPHISMS[2]

Let ϕ: G ⇒ G’ be a homomorphism, where G and G’ are groups.

1. ϕ(e) = e’ is the identity element in G’, if e is the identity element of G

2. For b ∈ G, Φ( b−1)= ϕ(b)−1

3. ϕ[K] is a subgraph of G’, if K is a subgroup of G.

4. ϕ−1[H’] is a subgroup of G, if H’ is a subgroup of G’.

Example 4.1. ϕ : Z ⇒ R given by ϕ(n)=(n) is a homorphism under addition.

4.2 Ring Homomorphism

Since homomorphism is defined as a structure relating map, in the case of rings it must

relate additive structure and multiplicative structure of rings.

4.3. HOMOMORPHISM[2] A map ϕ of a ring R into a ring R’ is a homomorphism

if

ϕ(a+b) = ϕ(a) + ϕ(b)

and
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ϕ(ab) = ϕ(a)ϕ(b)

for all elements a,b in R.

Example 4.2. ( Projection homomorphism)[2] For rings R1,R2,...,Rn, we have the map

πi from R1 × R2 ×...× Rn to Ri where πi(r1,r2,...,rn)=ri is a homomorphism projected

to the ith component.

4.4. PROPERTIES OF HOMOMORPHISM[2] Let ϕ: R ⇒ R’ be a homomorphism,

where R and R’ are rings.Then

1. ϕ(0) = 0’ is the additive identity element in R’, if 0 is the additive identity element of

R.

2. For b ∈ R, ϕ(-b)=- ϕ(b)

3. ϕ[K] is a subring of R’, if K is a subring of R.

4. ϕ−1[H’] is a subring of R, if H’ is a subring of R’.

5. ϕ(1) is the unity of ϕ[R], if 1 is the unity of R.

4.3 SEMIRING HOMOMORPHISM

4.5. [3] Let (S,+,.,0,1) and (S’,
⊕

,
⊗

,0’,1’) be two semirings. Then the map f: S′ is said

to be a semiring homomorphism if for all a,b in S,

f(a+b) = f(a)
⊕

f(b),

f(a.b) = f(a)
⊗

f(b),

f(0) = 0’ and

f(1) = 1’
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Example 4.3. Let P(Z0) be taken as the power set of the non negative integers ZO.

Then (Z0,+,.,0,1)and(P (Z0),∪,∩,ϕ,(Z0)) are semirings with operations usual addition and

multiplication on (Z0) and usual set union and intersection on P(Z0).

Then we have the mapping ϕ: Z0 ⇒ P(Z0) by ϕ(n) = [n] = 0, 1, 2, ..., n− 1} is a semiring

homomorphism.

4.4 Relation between homomorphisms and deriva-

tions on semirings

Homomorphisms and derivations have a link in semiring theory. A semiring is a set that

has two binary operations—addition (+) and multiplication (.)—and meets specific crite-

ria.

A function that preserves the structure of the semirings, including the addition and multi-

plication operations, is called a homomorphism between two semirings. On the other hand,

a function that satisfies a property comparable to the calculus product rule is a derivation

on a semiring.

A derivation is specifically a function D from a semiring R to itself such that the following

is true for any elements a and b in R.

1. (Derivation respects addition) D(a+b) = D(a) + D(b)

2. D(a.b) = D(a).b + a.D(b) (respecting multiplication in the derivation)

Any homomorphism between two semirings also induces a derivation, which is how homo-

morphisms and derivations are related.

For example, let ϕ be the homomorphism from semiring R to semiring S, then we have
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the function D(a)= ϕ(a) - ϕ(0) to be the derivation on R.



Conclusion
Semirings have wide applications in various fields such as mathematics, computer sci-

ence and engineering. They are used to model graph algorithms like that of Dijikstra’s

algorithm we done in this paper. They also find applications in cryptography, optimization

problems , network flow analysis, signal processing and automata theory. Through this

paper we could study about semirings, their derivations, application in graph theory and

relation between homomorphisms and derivations on semirings.
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