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INTRODUCTION

Matrix decomposition,also known as matrix factorization,is a technique

used in linear algebra to break down a matrix into simpler

components.There are several types of matrix decompositions,each with

its own set of applications and benefits.A common decomposition

method is SINGULAR VALUE DECOMPOSITION(SVD) is discussed

in this project.

The computation of SVD involves factorizing a matrix into three

matrices,a diagonal matrix and two orthogonal matrix that contain the

left and right singular vectors.One of the most significant properties of

SVD is that it provides a way to extract the most important

information from a matrix.SVD is also useful for computing low-rank

approximation of a matrix and to solve linear system of equations for

computing pseudoinverse of a matrix.

Many popular algorithms have been implemented in Python,a

programming language icluding sorting algorithm,searching

algorithm,machine learning algorithm.There are so many libraries

available in Python that provide implementations of advanced

algorithms of matrix operations,numerical analysis etc.

SVD has numerical application in various fields including data

analysis,image compression and machine learning.The application of

SVD are vast and varied,making it a powerful tool for analysing and

manipulating complex data in many different fields.The main goal of

this project is to apply singular value decompositon ,its algorithm to a

given problem and use the results to extract useful information or solve

a specific task.
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Chapter 1

PRELIMINARIES

ORTHOGONAL MATRIX:

It is a square matrix whose columns and rows are orthogonal unit

vectors.that is,the dot product of any two different rows or columns is

zero,and the dot product of any row or column with itself is one.

DIAGONAL MATRIX:

It is a square matrix whose entries off the main diagonal are zero,and

the entries on the main diagonal can be any real or complex numbers.

NORMAL MATRIX:

It is a square matrix that commutes with its conjugate transpose.That

is,a matrix A is said to be normal if it satisfies the equation

AAH = AHA

where AH ,the conjugate transpose of A.

The Conjugate Transpose of a matrix is obtained by taking the

transpose of the matrix and taking the complex conjugate of each entry.
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HERMITIAN MATRIX:

It is a matrix that is equal to its conjugate transpose.That is,

A = AH

where AH is the conjugate transpose of A.

ORTHONORMAL MATRIX:

It is a square matrix where all the columns are orthonormal,meaning

that each column has length of 1 and is perpendicular to every other

column in the matrix.

EIGENVALUES AND EIGENVECTORS:

Let A be an n× n matrix.

An eigen vector of A is a nonzero vector v in Rn such that Av = λv,for

some scalar λ.

An eigen value of A is a scalar λ such that the equation Av = λv has a

nontrivial solution.

POSITIVE DEFINITE MATRIX:

A positive definite matrix is a symmetric matrix whose every eigen

values is positive.

EIGENVALUE DECOMPOSITION:

Given a square matrix A, the eigenvalue decomposition expresses it as a

product of three matrices:

A = PDP−1

where:
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A is the square matrix to be decomposed,

P is a matrix whose columns are the eigenvectors of A,

D is a diagonal matrix whose diagonal entries are the corresponding

eigenvalues of A.

RANK OF A MATRIX:

Let A is an m× n matrix.Then Rank(A) is defined as the

dim(Range(A)) .It is the number of linearly independent rows (or

columns) of matrix A.

For example,

A1 =

1 0 1

0 1 0

0 0 1

 having rank 3.

A2 =

2 1 −1

1 0 1

1 1 −2

 having rank 2.
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Chapter 2

INTRODUCTION TO SINGULAR
VALUE DECOMPOSITION

The Singular Value Decomposition(SVD) is a fundamental

matrix factorization technique in linear algebra. It was first introduced

by Eugenio Beltrami in 1873, but its modern form and importance in

numerical linear algebra emerged later.

The term “Singular Value Decomposition ” was coined and popularized

by Golub and Kahan in their seminar paper “ Calculating the Singular

Values and Pseudo-Inverse of a Matrix” published in 1965. Their paper

provided efficient algorithms for computing the SVD and emphasized its

importance in various numerical applications, including least-squares

solutions and eigenvalue problems.

Since then, the SVD has become a fundamental concept in numerical

linear algebra and found applications in diverse fields, including signal

processing, data compression, image processing, statistics, machine

learning, and more. Its significance lies in providing a powerful tool for

understanding the properties of matrices, data analysis, and solving

various mathematical problems in practical and efficient ways.
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2.1 SINGULAR VALUE DECOMPOSITION:

Singular value decomposition(SVD) is a matrix factorization technique

that decomposes a matrix into three matrices.

Given an m× n matrix A ,SVD factorises it into three component

matrices:

A = UΣV T

where U is an m×m Orthogonal matrix.ie,UUT = I .

Σ is an m× n diagonal matrix with diagonal elements on the first r

rows are singular values and rest of the entries zero.

and V T is the transpose of an n× n Orthogonal matrix V.ie,V V T = I

ie,An m× n matrix A can be decomposed into three components:

A=


... ... ... ...

u1 u2 · · · um
... ... ... ...


m×m



σ1 0 0 0

0 σ2 0 0

· · · · · · · · · · · ·
· · · · · · σr 0

0 0 · · · 0

0 0 0 0


m×n


· · · vT1 · · ·
· · · vT2 · · ·

...

· · · vTn · · ·


n×n

What are those factors U,V and Σ ?

Let A be an m× n matrix .λ1 ≥ λ2 ≥ λ3 ≥ .......λn ≥ 0 be the eigen

values of ATA .

Let σi =
√
λi, then σ1 ≥ σ2 ≥ σ3......σn ≥ 0.These σi’s are called

Singular values of A.

Consider AAT = (UΣV T )V ΣTUT = UΣ2UT and
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ATA = (V ΣTUT )UΣV T ) = V Σ2V T

The matrix AAT and ATA is symmetric positive definite .So it has

non-negative real eigen values and orthogonal eigen vectors.

The columns of U are orthogonal unit vectors u1, u2, u3, .....um of AAT

and they are left singular vectors of A.

Similarly The columns of V are the orthogonal unit vectors

v1, v2, v3, ......vm of ATA and they are called right singular vectors of A.

If m > n, then the Matrix Σ has diagonal structure upto n rows and

consists zeros from n+1 to m.

Σ=



σ1 · · · 0
... . . . ...

0 · · · σn
0 · · · 0
... · · · 0

0 · · · 0


If m < n,then the Matrix Σ has Diagonal structure upto column m and

zeros consists from m+1 to n.

Σ=


σ1 0 · · · 0 0 · · · 0

0 σ2 · · · 0 0 · · · 0
... . . . ... ... · · ·
0 0 · · · σm 0 · · · 0


It is important to note that SVD can be performed on any

matrix,including rectangular and singular matrices,while eigenvalue

decomposition can only be done on square matrices,this property makes

SVD more versatile and widely used matrix factorisation technique.
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2.1.1 TRUNCATED SVD

It is a variant of the full SVD that approximates a given matrix by

keeping only the most significant singular values and their

corresponding singular vectors.

In Truncated SVD,we keep only the top k singular values and their

corresponding singular vectors, effectively reducing the dimensionality of

the original matrix A. The truncated SVD is represented as:

A ≈ UkΣkV
T
k

Where:

Uk is an m× k matrix, containing the first k columns of U.

Σk is a k × k diagonal matrix, containing the top k singular values of A.

V T
k is the transpose of an n × k matrix, containing the first k columns

of V T .

A=


... ... ... ...

u1 u2 · · · uk
... ... ... ...


m×k


σ1 0 0

0 σ2 0

· · · · · · · · ·
· · · · · · σk


k×k


· · · vT1 · · ·
· · · vT2 · · ·

...

· · · vTn · · ·


n×k

Truncated SVD is particularly useful when dealing with

high-dimensional data and reducing computational complexity while

retaining most of the essential information of the original matrix.

It has applications in various fields, including data compression, and

feature extraction in machine learning. The choice of the parameter k

determines the level of compression and the amount of information

preserved.
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2.2 GEOMETRICAL INTERPRETATION OF SVD

In the Geometrical interpretation of Singular Value Decomposition

(SVD) on the unit sphere,SVD factors can be related to transformations

that can be visualised in terms of rotation and stretching.

An m × n matrix A maps a unit sphere in Rn to an ellipsoid in Rm.

SVD decomposes a matrix into three fundamental components:

U,Σ and V T .

Since U and V are orthogonal, applying V and U results in two

rotations without distorting the shape

While application of Σ stretches the circle along the coordinate axes to

form an ellipse.

For higher dimensions, with rank(A) = r, the unit sphere is transformed

to an r-dimensional ellipsoid with semi-axes in the direction of the left

singular vectors ui of magnitude σi

A 2× 2 matrix is visualised in the figure.

Let v = (v1, v2) be two unit vectors in R2 .

SVD of A =UΣV T

⇒ Av = (U ΣV T )v

⇒U ΣV T (v)

Here, V T rotates and aligns the vector v with the principal axes.Since

V T is an orthogonal matrix,it preserves the length of v but may change

its orientation.
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⇒ UΣ(V Tv)

Here,the matrix Σ scales the transformed vector V Tv by the singular

values.Since Σ is diagonal,it scales the vector differently along the

principal axes.

⇒U ( ΣV Tv)

Here the matrix U further transforms the scalar vector ΣV Tv into the

output space of R2.Since U is orthogonal,it preserves the length and

orientation of the transformed vector.

So,the SVD of the 2-dimensional matrix A allows us to decompose any

input vector v into three successive transformations:

Rotation,Scaling,another Rotation.
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Chapter 3

COMPUTING SVD

The computation of Singular Value Decomposition (SVD) involves

several steps.

1. Compute ATA to obtain the m×m symmetric positive semi-definite

matrix ATA.

2. Find the eigenvalues and eigenvectors of ATA

Compute the eigenvalues (λ1, λ2, ......, λm) and corresponding

eigenvectors (v1, v2, ..., vm) of A
TA. The eigenvalues will be

non-negative real numbers, and the eigenvectors will be m-dimensional

unit vectors.

3. Sort and normalize the eigenvectors:

Sort the eigenvalues and corresponding eigenvectors in descending order

based on the magnitude of the eigenvalues. Normalize each eigenvector

to make them unit vectors.

4. Form matrix V:

The matrix V is an m×m matrix whose columns are the normalized

eigenvectors obtained in step 3. The i-th column of V is the normalized

eigenvector corresponding to the i-th largest eigenvalue.
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5. Compute the singular values :

The singular values (σ1, σ2, ..., σn) of the original matrix A can be

obtained as the square root of the non-zero eigenvalues (λ1, λ2, ..., λn),

6. Construct the Σ matrix:

Create the Σ matrix, which is an m× n diagonal matrix containing

non-zero singular values obtained in step 5.

Once you have computed V and Σ, you can find the matrix U using the

relation:

U = AV Σ−1

Now,Let’s look at an example of computing SVD for a 2× 3 matrix.

Let A=

[
1 1 0

0 0 1

]
The SVD of the matrix A is of the form A2×3 = U2×2Σ2×3V3×3

Compute ATA

AT =

1 0

1 0

0 1


Then ATA =

1 0

1 0

0 1

×
[
1 1 0

0 0 1

]
=

1 1 0

1 1 0

0 0 1


Now to find the eigenvalues and eigenvectors of ATA by solving the

characteristic equation det( ATA− λI) = 0 ,where λis the eigen value

and I is the identity matrix.

Here we get the Characterisation equation as,
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1− λ 1 0

1 1− λ 0

0 0 1− λ

 = 0

Solving the equation we get the eigenvalues λ as 0,1 and 2.

Now we find eigenvectors corresponding to these eigen values.Sort the

eigenvalues in descending order.Then the corresponding singular values

are the square roots of this eigen values.

For λ1 = 2,λ2 = 1,λ3 = 0

Then the singular values are σ1 =
√
2, σ2 = 1, σ3 = 0

The corresponding eigen vectors are,

for λ1 = 2, X1 =

11
0


for λ2 = 1, X2 =

00
1


for λ3 = 0, X3 =

−1

1

0


Normalise these eigen vectors,

v1 =


1√
2
1√
2

0

 ; where
√
2 =

√
12 + 12 + 02

Similarly, v2 =

00
1

 and v3 =


−1√
2
1√
2

0


19



∴ V=
[
v1 v2 v3

]
=


1√
2
0 −1√

2
1√
2
0 1√

2

0 1 0


Then Σ =

[√
2 0 0

0 1 0

]
To find U ,

u1 =
1
σ1
Av1 =

1√
2
×
[
1 1 0

0 0 1

]
×


1√
2
1√
2

0

 =

[
1

0

]

u2 =
1
σ2
Av2 =

1
1 ×

[
1 1 0

0 0 1

]
×

00
1

 =

[
0

1

]

∴ U=
[
u1 u2

]
=

[
1 0

0 1

]
Now we can easily verify that UΣV T = A

UΣV T =

[
1 0

0 1

] [√
2 0 0

0 1 0

]
1√
2

1√
2
0

0 0 1
−1√
2

1√
2
0


=

[
1 0

0 1

] [
1 1 0

0 0 1

]
= A
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3.1 SVD USING PYTHON

In Python,libraries are collection of pre-written code and functions that

serve specific purposes.Libraries can easily imported into python

projects.

NumPy is the most fundamental and widely used libraries in python

for numerical computing.

Here,we utilised the power of NumPY to compute the Singular Value

Decomposition of a given matrix.In NumPy,the ‘numpy.linalg’

module is used to solve various linear algebra problems.

To compute SVD,we used the built-in ‘numpy.linalg.svd()’

function from NumPY,which is specially designed to perform the SVD

of a matrix efficiently.The function calculates the left singular

vectors,singular values,the transpose of the right singular vectors of the

matrix.

lets look at an example.

matrix=np.array([[1,2],[3,4]])

U,singularValues,Vt=svd(matrix)

print(” U matrix:”)

print(U)

print(”Singular Values:”)

print(singularValues)

print(”V T matrix:”)

print(Vt)
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lets look at how the function svd() defined in Python.

import numpy as np

def svd(A):

# Compute ATA

ATA=np.dot(A.T,A)

# Find eigenvalues and eigenvectors of ATA

eigenvalues, eigenvectors = np.linalg.eigh(ATA)

#Sort eigenvalues and corresponding eigenvectors in

descending order

idx = np.argsort(eigenvalues)[::-1]

eigenvalues = eigenvalues[idx]

eigenvectors = eigenvectors[:, idx]

# Calculate singular values σi
singularValues = np.sqrt(np.maximum(eigenvalues, 0))

# Compute matrix U

U = np.dot(A, eigenvectors)

U /= np.linalg.norm(U, axis=0)

# Compute matrix V T

V = eigenvectors / singularValues

return U, singularValues, V.T
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Chapter 4

APPLICATIONS OF SVD

How many pictures you take on your smartphone every day?

Now, imagine trying to share these pictures with friends or family, but

you have limited data or storage space.

That’s when SVD becomes your trusty sidekick! It takes these

high-resolution images, captures their essential features, and creates a

compact representation that preserves the most critical details.

SVD helps to save space and data without losing the beauty of your

memories.

Now, let’s dive into the world of online shopping. Imagine you’re an

e-commerce giant with millions of users and an endless inventory of

products. How do you make sure your customers find what they love?

That’s where SVD comes to the rescue! With collaborative filtering,

SVD analyzes user interactions, identifies hidden connections between

users and items, and recommends products they might adore.

In this chapter, let’s explore applications of Singular Value

Decomposition (SVD). We will unlock the potential of SVD in image

compression and personalized recommendations .
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4.1 LOW RANK APPROXIMATION

Let A be an m× n matrix and A = UΣV T be its Singular value

decomposition.

Σ is an m× n diagonal matrix with entries σ1 ≥ σ2 ≥ ...... ≥ σr ≥ 0

where r=min(m,n).

Let Σ = Σ1 + Σ2 + Σ3 + ....... + Σr,

where Σj is the diagonal matrix with σj on the diagonal,but all the

other entires are zero.

Then UΣjV
T =


... ... ... ...

u1 u2 · · · um
... ... ... ...

Σj


· · · vT1 · · ·
· · · vT2 · · ·

...

· · · vTn · · ·


= σjujv

T
j ,is a rank 1 m× n matrix.

Then A=UΣV T

=U(Σ1 + Σ2 + ..... + Σr)V
T

=σ1u1v
T
1 + σ2u2v

T
2 + ....σrurv

T
r

Thus the Matrix A decomposes into the sum of rank 1 matrices.

Because of the ordering σ1 ≥ σ2 ≥ .... ≥ σr >0,the rank 1 pieces

appear in the descending order of importance.

So σ1u1v
T
1 is the best rank 1 approximation to A.

σ1u1v
T
1 + σ2u1v

T
2 is the best rank 2 approximation etc.

Then
∑k

j=1 σjujv
T
j will be a good approximation for some value of k

that is much smaller than the rank of the matrix A.

This leads to the idea of low rank approximation.
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MATRIX NORMS:

Matrix norms are mathematical measures that define the ”size” or

”magnitude” of a matrix. Two commonly used matrix norms are the

2-norm (also known as the spectral norm) and the Frobenius norm.

2-Norm (Spectral Norm):

The 2-norm of a matrix is the maximum singular value of the matrix. It

is defined as follows:

||A||2 = max(σ),

where σ represents the singular values of the matrix A.

Example: Let’s consider a 2× 2 matrix A:

A =

[
3 1

1 4

]
To find the 2-norm of A, we first need to find its singular values. The

singular values of A can be obtained by finding the square root of the

eigenvalues of ATA. After calculating the eigenvalues, we find the

singular values:

Eigenvalues of ATA:

λ1 = (7 +
√
5)/2

λ2 = (7−
√
5)/2

Singular values of A:

σ1 =
√
λ1 ≈ 1.9817

σ2 =
√
λ2 ≈ 1.7516

The 2-norm of A is the maximum singular value:

||A||2 = max(σ1, σ2) ≈ 1.9817
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Frobenius Norm:

The Frobenius norm of a matrix is the square root of the sum of the

squares of all its elements. It is defined as follows:

||A||F =
√

(Σ(Aij)2),

where Aij are the elements of the matrix A.

Example:

Let’s use the same 2× 2 matrix A:

A =

[
3 1

1 4

]
To find the Frobenius norm of A, we compute:

||A||F =
√
((32 + 12) + (12 + 42)) =

√
(10 + 17) ≈

√
27 ≈ 5.1962

The Frobenius norm gives a measure of the overall magnitude of the

matrix, taking into account all its elements, while the 2-norm focuses on

the largest singular value, providing a measure of the maximum scaling

effect when the matrix is applied to a vector.
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Theorem:Eckart Young

Let A ∈ Rm×n .Then for all k ≤rank(A),the truncated Singular value

decomposition

Ak =
∑k

j=1 σjujv
T
j

is the best rank k approximation to A,in the sense that it minimize the

difference between the original and truncated matrix.ie,

||A− Ak||F = min
rank(A)=k

||A−X||F ,

where ||.||F is the Frobenius norm.

IMAGE COMPRESSION USING SVD

Image Compression provides the most visually appearing application of

the low rank approximation of SVD.

A grayscale m× n pixel image can be represented as a m× n matrix A

where Ai,j is the intensity of pixel pi,j . In most cases, the intensity lies

in the range [0, 255] where 0 is black and 255 is white.

When the original image takes up O(mn) space, the truncated SVD of

the image matrix takes up O(k(m + n + 1)) space. Since k(m+n+1)

very less than mn there will be significant savings in storage ,thus giving

an effective compression of A.

We have seen that the truncated SVD is the best k-rank approximation

for the original matrix,minimising the difference between the original

matrix and truncated matrix.
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Lets look at an exmaple how effective this image compression can be.

The original image is 480× 640, and so the space needed is reduced for

all k ¡ 480.

Lets examine the resulting image Ak = UkΣkV
T
k for increasing values of

k when we compress the image using SVD.

The following figure shows the original picture with rank 480.

For k = 288, we can barely notice any difference between the original

image and the compressed image.

For k=48 the quality of the image degrades a bit.

Even for k=15,you can still tell that the image shows a city.

28



29



Then how’s the image for k=1?

So here we are retaining the top 288 singular values and their

corresponding singular vectors for compressing the image.

4.2 MOVIE RATING SYSTEM USING SVD

Have you ever wondered how Netflix figures out which movie you want

to watch netflix? They have their own recommender systems to do

so.There are some fundamental ideas in mathematics that will help us

understand how those recommender systems work,One such idea is the

SVD.

30



Consider a simplified movie rating matrix with four users (A, B, C, D)

and four movies (X, Y, Z, W). The matrix could look like this:

X Y Z W

A 5 4 − 2

B − 3 4 5

C 1 − 2 3

D 4 − 3 −

SVD decomposes the original matrix into three matrices: U, Σ and V T .

The resulting matrices capture the underlying latent features that drive

user preferences and movie characteristics.

U: User-feature matrix (left singular vectors): Each row represents a

user’s affinity for the latent features.

Σ: Diagonal matrix with singular values: These values represent the

importance of each latent feature, arranged in descending order.

V T : Item-feature matrix (right singular vectors): Each row represents a

movie’s strength in the latent features.

SVD often involves truncating the number of latent features by selecting

the top k singular values and their corresponding vectors

Those matrices are given below.

U =

Feature 1 Feature 2

A 0.88 0.48

B 0.23 0.82

C 0.53 0.31

D 0.69 0.04

Σ =

[
9.02 0

0. 5.81

]
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V T =

Feature 1 Feature 2

X 0.89 0.48

Y 0.41 0.88

Z 0.57 0.08

W 0.00 0.00

To recommend movies to a specific user, we find the movies with high

predicted ratings based on the user’s preferences and the movie

characteristics .

Now, to recommend movies to user C, we calculate the predicted ratings

for each movie based on their preferences:

Predicted rating for movie X =0.53× 0.89 + 0.31× 0.48 ≈ 0.71

Predicted rating for movie Y =0.53× 0.41 + 0.31× 0.88 ≈ 0.40

Predicted rating for movie Z = 0.53× 0.57 + 0.31× 0.08 ≈ 0.34

Predicted rating for movie W = 0.53× 0.00 + 0.31× 0.00 ≈ 0

Based on these predicted ratings, we can recommend movie X to user C,

as it has the highest predicted rating.

SVD provides a foundation for collaborative filtering methods and has

proven to be effective in many recommendation systems, including

movie rating systems.
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CALCULATING PSEUDOINVERSE

Let A be an m× n matrix. Then an n×m matrix X is the

pseudoinverse of A if X satisfies the following properties:

(i) AXA = A

(ii)XAX = X

(iii)(AX)T = AX

(iv) (XA)T = XA

The pseudoinverse of A is denoted by A+

Now, when A = UΣV T then,

A+ = (UΣV T )+

⇒(VT )−1Σ+U−1

⇒ (V −1)−1Σ+UT

⇒ V Σ+U

ie,A+ = V Σ+U

where Σ+ = diag(σ+
i ) and

σ+
i =

{
1/σi , ifσi > 0

ifσi = 0

Example

Let A=

[
1 1 0

0 0 1

]
In chapter 2,we have seen the SVD of A is,[
1 0

0 1

] [√
2 0 0

0 1 0

] 
1√
2

1√
2
0

0 0 1
−1√
2

1√
2
0


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The Pseudo inverse A+ is,
1√
2
0 −1√

2
1√
2
0 1√

2

0 1 0


 1√

2
0

0 1

0 0

 [
1 0

0 1

]

=


1√
2
0

1√
2
0

0 1


In this chapter,we have seen three applications of SVD.

SVD plays a crucial role in data analysis,dimensionality

reduction,collabarative filtering.The practical relevance of SVD in

solving real life problems make Singular value decomposition significant.
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CONCLUSION

Singular value decomposition (SVD) is a method of representing a

matrix as a series of linear approximations that expose the underlying

meaning-structure of the matrix.

The singular value decomposition hold for any matrices ,while eigen

value only holds for square matrices that are diagonalizable.This makes

Singular value decomposition a better tool.

Singular value decomposition is effective in devoloping low rank

approximation to A than Eigen value Decomposition .This is

because,the singular values are non-negative real numbers whose

ordering

σ1 ≥ σ2 ≥ σ3 ≥ .....σr>0

gives a natural way to understand how much the rank 1 matrices

σjujv
T
j contribute to A.

Mathematical application of SVD involves computing the

Pseudoinverse,matrix approximation,and determining

rank,nullspace,range of a matrix.

Singular value Decomposition is also useful in the field of

science,engineering, ans statistics such as signal processing,least squares

of fitting of data and process control.
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