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INTRODUCTION 
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❖ Haar Bases and the associated Haar Wavelets, a vital tool in the 

processing of signals and computer graphics. 
 

❖ Hadamard matrices, which are used in low rank estimation, 

processing of signals, and error fixing codes. 

 

❖ Affine maps: These are typically dealt in a vague or ignored manner. 

Nevertheless, they are crucial to robotics and computer vision. The 

definition of affine maps is simple and elegant. The only                                

requirement is to define affine combinations. Similar to how affine 

maps maintain affine combinations, linear maps preserve linear 

combinations. 

 

❖ An affine function has a graph that is a line of equality and is made 

up of a linear function and a constant. y = Axe + c is the general 

equation for an affine function in one dimension. A linear 

transformation followed by a translation represents an affine 

transformation, which is demonstrated by an affine function. 

 

❖ The subject of linear algebra is linear mixtures. To build new 

columns and palettes of numbers, arithmetic is used to arrays of 

numbers called matrices and columns of numbers called vectors. 

Linear algebra is an investigation of the planes, lines, spaces of 

vectors, and mappings required for linear transformations. 

 

❖ An n-by-n matrix having 1 or -1 units and mutually orthogonal 

columns is known as a Hadamard matrix. 

 

❖ An ML algorithm employs a variety of precise, probabilistic, and 

modern methodologies that enable computers to learn from the past 

and recognise challenging patterns in large, noisy, or complicated 

datasets. 
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❖ Artificial intelligence :  The field of artificial intelligence integrates 

computer science with huge datasets to aid in problem-solving. It 

also encompasses the aspects of artificial intelligence known as   

machine learning and deep learning, which are frequently discussed 

in tandem. 

 

❖ Deep Learning : A machine learning technique based on artificial 

neural networks in which input undergoes processing through many 

layers to extract features at progressively higher levels. 

 

❖ Baye’ s  theorem : The chance of the second event given the first event 

multiplied by the probability of the first event is the conditional 

likelihood of an event dependent on the occurrence of another event. 

 

❖ Confusion matrix : To explain how effectively a categorization 

system performs, a confusion matrix is utilised. 

 

❖ To work with arrays, utilise the NumPy Python module. It 

additionally offers functions for working with Matrices, the Fourier 

Transform, and the field of Linear Algebra. 
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 Introduction of Machine Learning  

 

Since its introduction in the 1950s, machine learning has gained popularity 

thanks to developments in statistics, computer science, better datasets, 

and neural networks. 

 

 What is machine learning ? 

Machine Learning (ML) is a part of Artificial Intelligence (Al) that allow 

computers to 'self-learn' from training data and get better over time 

without having explicit programming. It is an automated procedure that 

allows robots to solve issues with little to no human involvement and acts 

in response to prior observations. Al is the more general idea of machines 

making decisions, picking up new abilities, and solving issues in a manner 

analogous to humans. While machine learning, a subset of artificial 

intelligence (Al), enables intelligent computers to learn new things on their 

own from data. Machine Learning can be used for processing  enormous 

amounts of data and outperforms people by a wide margin. 

 

  What is the use of Machine Learning in Daily Life ? 

Enterprises need machine learning to comprehend consumer behaviour 

and create new goods. 
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 Applications of Machine Learning in Daily Life one by one  

 

1) Traffic Aware (eg: Google Map): 

Using two methods, it makes predictions about the state of the traffic, 

including whether it is clear, going slowly, or jam-packed.; 

➢ The vehicle's real-

time location as determined by sensors and the Google Maps app 

➢ On similar days in the past, the average amount of time was needed. 

 

2)Product Feedback : 

Ads for the same product run across many channels.35% of Amazon's 

revenue comes from the recommendation of adverts based on search 

history, which is done via machine learning 

 

3)Digital Personal Assistant : 

Digital personal assistants can find helpful information with the aid of 

machine learning. Chatbots employ personal assistants to respond to 

inquiries and do information searches. 

 

4) Autonomous Car : 

Self-driving cars use machine learning, primarily NVIDIA's Unsupervised 

learning Algorithms. The € 750 billion in data from vehicles and drivers is 

crowdsourced via IOT sensors by NVIDIA's Deep Learning model. 
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5)Social Network : 

Based on the facial detection and image recognition capabilities of 

DeepFace, machine learning is utilised to automatically tag people. Images 

posted to Facebook are given Alt Tags by Deep Face, which also recognises 

faces. 

 

6)Transportation and Commuting : 

Location is automatically determined by machine learning, which offers 

options based on previous experiences and patterns. Machine learning 

raises the accuracy of ETA predictions by 26%. 

 

7)Google Translate :  

Using Google Translate, tourists can connect with locals in several 

languages. 

 

8) Image Recognition : 

It is employed to identify individuals, locations, digital photos, etc. 

Automatic close friend tagging suggestions is a common application of 

picture recognition. 

 

9) Email spam And Malware Filtering : 

Every new email that we receive is automatically categorised as essential, 

normal, and spam. We consistently get critical emails in our inbox, 

important emails in our spam folder, and machine learning emails in our 

spam folder. 
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10) Online fraud Detection : 

By identifying fraudulent transactions, Machine Learning  tries to makes 

our online transactions safe and secure. Every time we make an internet 

purchase, there may be a number of ways for a fraudulent transaction to 

occur, among them include the use of fake accounts and identification 

cards, as well as the theft of money during a transaction. As a result, Feed 

Forward Neural Network assists us in identifying this by determining if the 

transaction is legitimate or fraudulent. 
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Mathematics for Machine Learning 

 

 Math is important for machine learning 

 

In order to comprehend and use algorithms in a variety of applications, one 

must be an expert in mathematics. The machine learning process at every 

stage incorporates mathematical ideas, from picking the appropriate 

method to selecting the appropriate parameter. Other factors include 

complexity, bias in variance trade-off, and selecting an effective training 

time. Mathematical underpinnings are the basis of machine learning. To 

accomplish the Data Science project and resolve the Deep Learning use 

cases, mathematics is needed. The fundamental idea behind the algorithms 

is clarified by mathematics, which also shows why one algorithm is better 

than another. Even if you don't understand the reasoning behind how 

algorithms work, you can still create models. 

Four machine learning pillars are used to tackle the majority of our real-

world business issues. Additionally, many machine learning approaches 

leverage these pillars. They really are: 

➢ Statistics 

➢ Probability 

➢ Linear Algebra 

➢ Calculus 
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 STATISTICS  

Everything revolves around Statistics. It is used to make inferences based 

on data. It focuses on statistical methods for compiling, displaying, 

analysing, and interpreting numerical data. Since statistics deal with 

enormous amounts of data and are essential to the expansion and 

development of an organisation, they are important in the field of machine 

learning. Censuses, Sampling, Primary and Secondary data sources, among 

other methods, can be used to collect data. We use this stage to help us 

define our goals so that we may go on to the following stages. The data 

collected is contaminated with errors, outliers, null values, noise, and other 

oddities. The data needs to be cleaned up and made into conclusions that 

can be put to use.  

It is important to deliver the information in a suitable and condensed way. 

It is one of the most crucial procedures since it helps with understanding 

the insights and provides the framework for further data analysis. Examples 

of data analysis methods that make use of Central Tendency, Dispersion, 

Skewness, Kurtosis, Co-relation, Regression analysis and other methods. 

Making judgements from the collected data is part of the interpretation 

process because the statistics do not speak for themselves. Any truly 

effective machine learning starts with factual learning. One such factual 

tactic was regression, which was provided as an example. Statistics used in 

machine learning can be divided into two categories based on the type of 

analysis they do on the data. Inferential statistics and descriptive statistics. 
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 PROBABILITY : 

 

Based on prior experiences, probability is the likelihood that a given 

occurrence will occur. It is used to predict the likelihood of future events in 

the field of machine learning. 

The Bayes theorem explains how the conditional probabilities of events are 

connected. This theorem functions well with data samples that have some 

level of ambiguity and can be used to determine the 'Specificity' and 

'Sensitivity' of data. The CONFUSION MATRIX is created using this 

theorem, which is essential. 

A confusion matrix, which resembles a table, is used to assess how well 

machine learning models or algorithms perform. When building the ROC 

Curve from the supplied data, this is helpful for calculating the True Positive 

Rates, True negative rates, false negative rates, False positive rates, 

precision, Recall, F1-score, Accuracy, and Specificity. 

The discrete and continuous varieties of probability distributions, as well as 

likelihood estimation functions, need to be given additional consideration. 

A probabilistic machine learning algorithm called the Naive Bayes 

Algorithm makes the assumption that the input attributes are independent. 

Numerous learning techniques are based on probability, including Nave 

Bayes and Bayesian Networks . 
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 CALCULUS: 

This area of mathematics supports the investigation of quantity change 

rates. Its goal is to make machine learning algorithms and models perform 

better. Without understanding calculus, it is impossible to compute 

probabilities on data, and we are unable to predict realistic consequences 

from the data we gather. Calculus' foundational concepts include functions, 

integrals, limits, and derivatives. The two types of statistics are differential 

statistics and inferential statistics. Using back propagation techniques, it is 

utilised to train deep neural networks. To ascertain how the data evolves, 

differential calculus divides the input into discrete pieces. Inferential 

Calculus integrates (joins) the small bits to calculate how much there is. 

Calculus is mostly utilised to boost the accuracy of Machine Learning and 

Deep Learning Algorithms. It is used to offer efficient and timely solutions. 

Calculus is used in optimizers like Adam, Rms Drop, and Adadelta as well as 

calculus mostly for creating various Deep Learning and Machine Learning 

models. They support in the process of making better use of data by 

optimising it and creating better data outputs. Pattern learning can be 

implemented using calculus. The ML model uses a number of state and 

control combinations for analysis. 
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 LINEAR ALGEBRA :  

In linear algebra, computation is emphasised. Usage include Deep Learning 

and is crucial for understanding the underlying idea of Machine Learning. 

It gives us a clearer picture of how algorithms work in practise and helps us 

form more accurate conclusions. It mostly concentrates on matrices and 

vectors. 

• A scalar is an integer with only one value. 

• A vector is a numerical array with only one index (i.e., either Rows or 

Columns) and is stated as a row or column. 

• A matrix is a two-dimensional array of numbers that may be accessed 

by both rows and columns as well as indices and keys. 

• A tensor is a collection of integers with a variable number of axes and 

a grid arrangement in a specific sequence. 

 

 

The Numpy module of the Python library is used to compute all of 

these numerical calculations on the data. The addition, subtraction, 

multiplication, and division operations that are performed on 

vectors and matrices by the Numpy library result in a meaningful 

value. The Numpy language is expressed as an N-d array. Without 

linear algebra, it is impossible to build machine learning models, 

maintain complex data structures, or perform matrix operations. 

The platform for presenting all the model results is linear algebra. 

Many Machine Learning methods, including Linear, Logistic 

Regression, SVM, and Decision Trees, are developed using linear 

algebra. Using linear algebra, we could even develop our own ML  
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algorithms. Data Scientists and Machine Learning Engineers use 

linear algebra to develop their own algorithms while working with 

data.  
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   CHAPTER 3: 

 HADAMARD MATIRICS 
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    LINEAR ALGEBRA FOR MACHINE LEARNING: 
             
 

HADAMARD MATRICS 
 

• Matrices Of Hadamard: 

 

Another well known family of matrices that are somewhat comparable to 

Haar matrices have entries +1 and -1. 

DEFINITION: A Real n × n matrix H is a Hadamard matrix if hij = ±1 for all 

i, j in such a way that 1≤i, j ≤ n and if  

HTH = nIn 

As a result the Hadamard matrix′s columns are pairwise orthogonal. The 

equation HTH = nln demonstrates that H is invertible because it is a square 

matrix , thus we also get HTH = nln. Hadamard matrices include the 

following examples.  

 

 

 
H2= 1       1 

 1      -1 
 
 
H4 =   1   1   1    1 
           1  -1   1   -1 
           1   1  -1   -1 
           1  -1  -1    1 
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And  

 
 
H8 =   1   1   1   1   1   1   1   1 

 1  -1   1  -1   1  -1   1  -1   

 1   1  -1  -1   1   1  -1  -1 

  1  -1  -1  1   1  -1  -1   1 

  1   1   1   1  -1  -1  -1  -1 

  1  -1   1  -1  -1  1   -1   1 

  1   1  -1  -1  -1  -1  1    1 

  1  -1  -1   1  -1    1   1 -1 

 

 
 

Find the positive numbers  n for which a Hadamard matrix of size n exists 

is a logical question , yet curiously  ,this one is still unsolved .The 

Hadamard conjecture states that there exists a Hadamard matrix of 

dimension n for each positive integer of the n=4k.   

 

  A necessary condition and many sufficient conditions are recognized. 

 

Theorem; 

if H is a n × n  Hadamard matrix ,then n must either be 1,2 or 4k for 

any positive integer k . 
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Sylvester introduced a family of Hadamard matrices and proved that 

there are Hadamard matrices of dimensions n=2m for all m≥1 using 

the following construction 

 

( Sylvester,1867)  The block matrix of measurements 2n is the case 

where H is a Hadamard matrix of dimension n, 

 

   H    H 

   H   -H 

        
            is a Hadamard matrix. 
 
             If we start with 

 
  H2  =      1    1 

       1   -1 
 

We obtain an infinite family of Sylvester-type symmetric  Hadamard 

matrices. The Sylvester –Hadamard matrices H2,H4 and H8 are 

represented by the letter H2m.  Hadamard  provided instances of 

Hadamard matrices in 1893 for the numbers n=12 and n=20. Hadamard 

matrices are currently known for all    n= 4k≤1000, with the expectation of 

n =668, 716 and 892. 

 

Numerous applications of Hadamard matrices can be found in numerical 

linear algebra, signal processing, and error-correcting codes . For 

instance, there is a code based on H that can both detect and repair  seven  
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faults in any 32-bit encoded block. In 1969 , a mariner spacecraft 

transmitted images back to the earth using this code. 

 

The Walsh function are the piecewise affine functions plf((H2m)I)  

associated with the 2m rows of the Sylvester – Hadamard matrix H for any 

m≥0. 

 

In order for the Walsh function Wal(k ,t) to be  equivalent to the function 

plf((H2m)I) associated with the row i of H2m that has k changes of signs 

between consecutive groups of +1 and  consecutive groups of -1 , these 2 

functions are often indexed by the integers 0,1,…,2m-1.For instance , the 

fifth row of H8 , specifically 

                                        (1   -1    -1   1   1   -1   -1   1) 
 

Has five blocks of +1 s  and -1 s in a row ,four signs changes occur between 

these blocks, and as a result is  a connected to Wal(4,t). 

Walsh functions , in particular ,that correlate to the rows of H8 (from top 

to the bottom) are : 

        Wal(0,t) , Wal(7,t) , Wal(3,t) , Wal(4,t) , Wal(6,t) , Wal(2,t) , Wal(5,t) 

 

Some publications refers to Sylvester-Hadamard matrices as Walsh 

Hadamard matrices due to the relationship between Walsh functions and 

these matrices. The 2m  Walsh functions are pairwise orthogonal for all m. 

The Countable set of Walsh Function Wal(k ,t) ,for all m≥0 and all k Such 

that , 0≤k≤2m-1  may be  organised in such a way that it’s  an orthogonal 

Hilbert basis of the Hilbert space L2([0,1]). Different techniques for  
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dimension reduction and low-rank matrix approximation use the Sylvester 

Hadamard matrix H2m. 

 
A specific type of structured dimension-reduction map is the subsampled 
randomized  Hadamard transform. 
An SRHT matrix is an l × n matrix of the type 

                
                                   ɸ=√n/l RHD    where, 
 
1)D is a random n × n diagonal matrix with independent random signs as 

its elements . 

2) A normalised Sylvester – Hadamard matrix of dimension n is given by 

 H= n-1/2Hn 

3) R is a uniformly distributed random l × n matrix that reduces an n-

dimensional vector to coordinates. 

 

• SUMMARY 

 

The following is the list of the chapter′s key ideas and findings : 

 

➢    A brief overview of Haar wavelets and the Haar basis vectors. 

➢    The [ tensor ] Kronecker product of matrices. 

➢    Sylvester – Hadamard and Hadamard matrices. 

➢    Walsh performs 
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CHAPTER 4:  

HAAR WAVELETS AND 
HAAR BASES 
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We go through Haar matrices that are used in Computer Science and 

Engineering in this chapter: 

 

• A fundamental tool in computer graphics and signal processing, Haar 

matrices and their accompanying Haar wavelets. 

 

 

 Introductory to Haar Wavelet Signal Compression: 

 

We start by taking a look at Haar wavelets in R⁴. In audio and video signal 

processing, wavelets are particularly useful for condensing large signals 

into much smaller ones that nevertheless include sufficient information to 

render them visually and acoustically identical when played. 

Consider the four Vectors w1, w2, w3, and w4 provided by  

 

 

w1 = [

𝟏
𝟏
𝟏
𝟏

]        w2 =  [

𝟏
𝟏

−𝟏
−𝟏

]        w3 =  [

𝟏
−𝟏
𝟏
𝟏

]         w4 =  [

𝟎
𝟎
𝟏

−𝟏

] 

 
 

Because these vectors are pairwise orthogonal, their inner product is zero, 

proving that they are really linearly independent. Allow U = [e1, e2, e3, e4] be 

the canonical basis of R4, and take W = [w1, w2, w3, w4] be the Haar basis. 

 Consider  U = R⁴'s canonical basis: e1, e2, e3, and e4. The formula for the 

basis matrix W = Pwu's transformation from U to W is 
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W= [

𝟏 𝟏 𝟏 𝟎
𝟏 𝟏 −𝟏 𝟎
𝟏 −𝟏 𝟎 𝟏
𝟏 −𝟏 𝟎 −𝟏

] 

 
 
and we quickly discover that W's inverse is provided by  
 
   

W-1 =  [

𝟏/𝟒 𝟎 𝟎 𝟎
𝟎 𝟏/𝟒 𝟎 𝟎
𝟎 𝟎 𝟏/𝟐 𝟎
𝟎 𝟎 𝟎 𝟏/𝟐

] [

𝟏 𝟏 𝟏 𝟏
𝟏 𝟏 −𝟏 −𝟏
𝟏 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 −𝟏

] 

 
 
Keep in mind that the first matrix in this product is (WTW)-1  and the second 

matrix in the previous product is WT. This causes the vector v = (6, 4, 5, 1) 

over base U to become c = (c1, c2, c3, c4) W, over the Haar basis,  

[

𝒄𝟏
𝒄𝟐
𝒄𝟑
𝒄𝟒

]     =     [

𝟏/𝟒 𝟎 𝟎 𝟎
𝟎 𝟏/𝟒 𝟎 𝟎
𝟎 𝟎 𝟏/𝟐 𝟎
𝟎 𝟎 𝟎 𝟏/𝟐

] [

𝟏 𝟏 𝟏 𝟏
𝟏 𝟏 −𝟏 −𝟏
𝟏 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 −𝟏

] [

𝟔
𝟒
𝟓
𝟏

]   =   [

𝟒
𝟏
𝟏
𝟐

] 

 
 

We first compute c = W-1v to convert a signal v = (v1, v2, v3, v4) to the 

coefficients of the signal c = (c1, c2, c3, c4) over the Haar basis. 

Be aware that the signal's general median value, c1, is equal to 

(v1+v2+v3+v4)/4.  

The background of the image (or of the sound) is represented by the 

coefficient c1. 
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Then, c2 provides v's coarse details, c3 provides v's first half's details, and c4 

provides v's second half's details. 

The process of reconstructing the signal involves figuring out v =Wc. The 

secret to effective compression is to set some of the coefficients of c to zero, 

resulting in a reduced signal c, but retaining just enough essential 

information to have the reconstructed signal v = Wc look nearly as good as 

the original signal v. 

 Thus, the steps are: 

input v → coefficients c = W-1 v→ compressed cˆ→  compressed v = Wcˆ. 

Modern video conferencing is made possible by this type of compression 

strategy. 

The reason for this has something to do with the reality that Haar wavelets 

are multiscale.  

It turns out that there is a faster way to find c =W -1v, without actually using 

W-1. 

Given the original signal v = (6, 4, 5, 1), we compute averages and half 

differences. We get the Coefficients as c3 = 1 and c4 = 2. 

Then again we compute averages and half differences. The Coefficients as           

c1 = 4 and c2 = 1.  Note that the original signal v can be reconstructed from 

the two signals and the signal on the left can be reconstructed from the two 

signals using first averages and first half differences. In particular, the data 

found using first averages and first half differences gives us :- 

5 + 1 = 𝒗𝟏+𝒗𝟐

𝟐
 + 

𝒗𝟏−𝒗𝟐

𝟐
  =  v1 

5 − 1 = 
𝒗𝟏+𝒗𝟐

𝟐
− 

𝒗𝟏−𝒗𝟐

𝟐
  = v2 

3 + 2 = 
𝒗𝟑+𝒗𝟒

𝟐
+

𝒗𝟑−𝒗𝟒

𝟐
   = v3 

3 − 2 = 
 𝒗𝟑+𝒗𝟒

𝟐
−

𝒗𝟑−𝒗𝟒

𝟐
  = v4. 
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 The scaling characteristics of Haar Wavelets, 

                      Haar Bases and Haar Matrices 

 

The Method discussed above can be generalized to signals of any length 2n.  

The prior instance is equivalent to n = 2. Consider the scenario where n = 3. 

The matrix provides the Haar basis (w1, w2, w3, w4, w5, w6, w7, and w8). 

 

 

W =   

[
 
 
 
 
 
 
 
𝟏 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎
𝟏 𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎
𝟏 𝟏 −𝟏 𝟎 𝟎 𝟏 𝟎 𝟎
𝟏 𝟏 −𝟏 𝟎 𝟎 −𝟏 𝟎 𝟎
𝟏 −𝟏 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎
𝟏 −𝟏 𝟎 𝟏 𝟎 𝟎 −𝟏 𝟎
𝟏 −𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟏
𝟏 −𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 −𝟏]

 
 
 
 
 
 
 

  

 
 
This matrix's columns is orthogonal, making it clear that W-1 = diag(1/8, 1/8, 

1/4, 1/4, 1/2, 1/2, 1/2)WT. 

 

With the exception of the first, which is used for averaging, it appears that 

the following Haar basis vector, w2, is the "Mother" of all the other basis 

vectors. 

 

 

 Indeed, in general, given 

 w2 = (1, . . . , 1, −1, . . . , −1),  
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the "scaling and shifting technique" is used to produce the remaining Haar 

basis vectors. 

w2, the scaling process generates the vectors 

w3, w5, w9, . . . , w2
j +1, . . . , w2n-1 +1, 

such that w 2^(j+1)+1 is obtained from w2^j+1 by forming two consecutive blocks 

of 1 and −1 

of half the size of the blocks in w2^j+1, and setting all other entries to zero. 

Observe that w2^j+1 has 2^j blocks of 2^(n−j) 

element. The Shifting Process be composed in shifting the blocks of 

1 and −1 in w2j+1
 to the right by inserting a block of (k − 1)2^(n−j) 

zeros from the left, with 0 ≤ j ≤ n − 1 and 1 ≤ k ≤ 2^j Be aware that we follow 

a tradition where j is used for scaling and k for shifting. Thus, we obtain the 

following formula for w2 

j+k:  

 

wj 
k  ( i ) =        0     ,1 ≤ i ≤ (k − 1)2(n−j) 

                           1      ,(k −1)2(n−j)+ 1 ≤ i ≤ (k − 1)2(n−j) + 2(n−j−1) 

                         −1      ,(k − 1)2(n−j) + 2(n−j−1) + 1 ≤ i ≤ k×2(n−j) 

0 ,k2(n−j) + 1 ≤ i ≤ 2n    

 

Followed by 0 ≤ j ≤ n − 1 and 1 ≤ k ≤ 2j. Of course w1 = (1, . . . , 1). 
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If we slightly alter our indexing, allowing k to range from 0 to 2j -1, and 

utilising the index j instead of 2j, the aforementioned calculations appear a 

little better. 

 

 

 

 Transformation of a vector to its Haar Coefficients: 

 

 Instead of utilising W-1  to transform a vector u into a vector c of coefficients 

over the Haar basis using the matrix W to rebuild the vector u from its Haar 

coefficients c, we can utilise quicker techniques that use averaging and 

diffencing.  

The series of vectors u0, u1,..., un is calculated as follows if c is a vector of 

Haar coefficients of dimension 2n: 

 

u 0 = c 

 

u(j + 1) = u j 

 

u (j + 1) (2i - 1) = uj (i) + u j (2 j + i) 

 

u (j + 1) (2i) = u j (i) - uj  (2j + i) . 

 

for j = 1,...,n-1  and i = 0,..., 2j.  u = un  is the reconstructed vector (signal). 
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We compute the sequence of vectors cn, c(n - 1),..., c0 as follows  
 
c n = u 
 
c j = c (j + 1) 

 
c  j(i) = [(c  (j + 1) (2i - 1) + c (j + 1)  (2i)]/ 2  
 
c j (2 j + i) = [(c  (j + 1) (2i - 1) - c  (j + 1) (2i)] /2 
 
for i = 1,...,2j and j = n - 1,...,0. c = c0 is the vector over the Haar basis. 
 
The conversion of a vector to its Haar coefficients for n = 3 is demonstrated 
here. 
 The Sequence u = (31, 29, 23, 17, - 6, - 8, - 2, - 4) is obtained: 
 
C3 = ( 31, 29, 23, 17, - 6, - 8, - 2, - 4) 

 

C2 = (
𝟑𝟏+𝟐𝟗

𝟐
,
𝟐𝟑+𝟏𝟕

𝟐
,
−𝟔−𝟖

𝟐
,
−𝟐−𝟒

𝟐
,
𝟑𝟏−𝟐𝟗

𝟐
,
𝟐𝟑−𝟏𝟕

𝟐
,
−𝟔−(−𝟖)

𝟐
,
−𝟐−(−𝟒)

𝟐
) = (𝟑𝟎, 𝟐𝟎,−𝟕,−𝟑, 𝟏, 𝟑, 𝟏, 𝟏) 

 

C1 = (
𝟑𝟎+𝟐𝟎

𝟐
,
−𝟕−𝟑

𝟐
,
𝟑𝟎−𝟐𝟎

𝟐
,
−𝟕−(−𝟑)

𝟐
, 𝟏, 𝟑, 𝟏, 𝟏) = (25,-5,5,-2,1,3,1,1) 

 

C0 = (
𝟐𝟓−𝟓

𝟐
,
𝟐𝟓−(−𝟓)

𝟐
, 𝟓, −𝟐, 𝟏, 𝟑, 𝟏, 𝟏) = (10,15,5,-2,1,3,1,1) 

 

So c = (10,15,5,-2,1,3,1,1). Conversely, given c = (10,15,5,-2,1,3,1,1), we 

get the sequence 

 

u0 = (10,15,5,-2,1,3,1,1) 

 

u1 = (10+15, 10-15,5,-2, 1,3,1,1) = (25,-5,5,-2,1,3,1,1) 
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u2 = (25+5,25-5,-5+(-2),-5-(-2),1,3,1,1) = (30,20,-7,-3,1,3,1,1) 

 

u3 = (30+1,30-1,20+3,20-3,-7+1,-7-1,-3+1,-3-1) = (31,29,23,17,-6,-8,-2,-4), 

 

which gives back u = (31,29,23,17,-6,-8,-2,-4). 
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CHAPTER 5: 

  CONCLUSION 
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For machine learning aficionados and hopefuls, mathematics is a crucial 

subject to concentrate on, and a strong background in maths is required. 

Every concept you learn about machine learning has a direct or indirect 

mathematical connection, as does every tiny algorithm you create or use to 

solve a problem. The mathematic principles behind machine the 

foundational mathematics that we study in the eleventh and twelfth grades 

forms the basis for learning. At that moment, we gain theoretical 

knowledge, but in the realm of machine learning, we come across the real-

world uses for the mathematics we previously studied . The best way to learn 

math concepts is to take a machine learning algorithm, find a use case, solve 

it, and understand the underlying arithmetic. Building various models for 

prediction, classification, audio or video recognition, etc., using machine 

learning is a hot trend in the field of computer science. Mathematical topics 

like linear algebra, probability, calculus, and statistics are required to build 

the machine learning model. We require a strong foundation in maths to 

develop machine learning solutions to real-world problems. The 

development of problem-solving skills is aided by a firm grasp of 

mathematical concepts. 

 

  



 

 

  PAGE 38  

 

 

 

 

 
TABLE OF SYMBOLS 

 
 
 

            Symbol                           Typical meaning 

 

              
 
           a, b, c, α, β, γ              Scalars are Lowercases 

           x, y, z                                Vectors are Bold Lowercases 

           A, C ,W, V                        Matrices are Bold uppercase 

           xT , AT                                Transpose of a Vector / Matrix 

           A-1                                       Inverse of a Matrix 

            ⟨x, y⟩                                        Inner product of x & y 

           x⊤y                                     Dot Product of x & y 

           B = (b1, b2, b3)            (Ordered) tuple 

           B = [b1, b2, b3]             Matrix with horizontally nested column vectors 

           B = {b1, b2, b3}             Set of vectors (unordered) 

           Rn                                       n-Dimensional Vector Space of Real numbers 

             ∅                                         Empty set 

           D                                         No. of Dimensions; indexed by d = 1, . . . , D 

            N                                        No. of Data points; indexed by n = 1, . . . , N 

           Im                                        Identity Matrix of size m × m 

           0m,n                                                        Matrix of Zeros of size m × n 

           1m,n                                     Matrix of Ones of size m × n 
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           dim                                    Dimensionality of Vector Space 

           det(A)                               Determinant of A 

           rk(A)                                 Rank of matrix A 

           | · |                                     Absolute value / Determinant  

           θ                                         Parameter vector 

 

 
 TABLE OF ABBERVIATIONS AND ACRONYMS 

 

 

                    ACRONYM                     MEANING                  
 
  
                      e.g.                                                for example 

                      i.e.                                                 this mean 

                      i.i.d.                                              Independent, Identically distributed 

                      PCA                                               Principal component analysis 

                      SPD                                               Symmetric, positive define 

                      SVM                                              Support Vector machine 
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