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                                     ABSTRACT  
Chapter 1 includes the preliminaries about interpolation such as forward difference , backward 

difference , central difference and errors in interpolation. 

Chapter 2 discuss about different methods of interpolation and some other formulas .  

Chapter 3 includes interpolation with unequal intervals, divided differences ,lagrange ‘s 

interpolation for unequal intervals .  

Chapter 4 discuss about spline interpolation and error . 

 

 

 

                        

 

 

 

 

 

 

 
                                                                   

 

           INTRODUCTION 



  

Interpolation is the process of estimating the value of a function for any intermediate value of 

the independent variable, given a set of tabulated values of the function at certain values of the 

independent variable. If the function is known explicitly, then the value of the function can be 

easily found for any value of the independent variable. However, if the form of the function is 

not known, then interpolation is used to estimate the value of the function at any intermediate 

value of the independent variable.  

  

Polynomial interpolation is a common method used for interpolation, where a polynomial 

function is used to approximate the unknown function. The process involves finding a 

polynomial function that passes through the given set of tabulated values of the function at 

certain values of the independent variable. The polynomial function is then used to interpolate 

or extrapolate the value of the function at any intermediate or outside values of the 

independent variable.  

  

The calculus of finite differences is a useful tool in the study of interpolation. By taking forward 

or backward differences of a function, we can derive interpolation formulae that are commonly 

used in engineering and scientific investigations. These formulae can be used to approximate 

the value of the function at any intermediate value of the independent variable.  

  

Overall, interpolation is an important technique used in many areas of science and engineering. 

Polynomial interpolation and the calculus of finite differences are important tools in the study 

of interpolation and are commonly used in practical applications.  

  



 

 

1.PRILIMINARIES 

      

1.1  TRANSCENDENTAL EQUATTIONS   

If h(u) is a Polynomial that is                                          

     h(u) = a0  um + a1 um-1 + a2 um-2 +….+am-1 u+am  

   Then the equation is called an algebraic equation   

             A non - algebraic equations are called transcendental equations. That is ,equations involving 

functions like,   sin u ,cos u tan u, log u, eu , etc… are called transcendental equations.                                            

Example: 2eu+1=0   

   

1.2   INTERPOLATION   

Given a set of data point (𝑢𝑗, h(𝑢𝑗)) for 0 < j < m where the nature of the function h(u) is not known 

explicitly it is required to find a simple function Ψ(u) such that, h(u) and Ψ(u) agree at the set of data 

points, such process is called  interpolation .   

If Ψ(u) is a Polynomial, then the process is called polynomial interpolation and Ψ(u) is called the 

interpolating polynomial.   

1.2.1   ERRORS IN POLYNOMIAL INTERPOLATION:   

Let v(u) be a function defined by the (m+1) points (𝑢𝑗,𝑣𝑗),j=0,1,2,…m and v(u) be a continuous function 

and differentiable (m+1) times.   

       Let v(u) be approximated by a Polynomial Ψm(u) of degree not exceeding m such that 𝛹𝑚(𝑢𝑗)=𝑣𝑗, 

j=0,1,2….,m. we know that 𝛹𝑚(𝑢𝑗) – v(𝑢𝑗) =0,j=0,1,2,…,m  v(u)-𝛹m(u)=𝜋 𝑚+1(𝑢) 𝑣m+1 (£) (𝑛−1)! 

where, 𝑢0 <£<𝑢𝑚  

   

 



1.3   FINITE DIFFERENCES   

Assume that we have a table of values (𝑢𝑗, 𝑣𝑗), j=0,1,2,…m of any function 𝑣 = ℎ(𝑢), the values of u  

being equally spaced in. that is  𝑢𝑗 = 0,1,2,3, … . 𝑚  

 Suppose that we are required to recover the values of h(u)  for some intermediate values of u, or to 

obtain the derivative of h(u) for some u,𝑢0 < 𝑢 < 𝑢𝑚. The methods for the solution to these problems 

are based on the concept of the differences of a function there are 3 types of difference of u.  

•Forward Differences  

•Backward Differences  

•Central Differences.  

 1.3.1   FORWARD DIFFERENCES: 

If 𝑣0, 𝑣1,𝑣2,… . 𝑦𝑛 Denote s set of values of v. The differences 𝑣1 − 𝑣0, 𝑣2 − 𝑣1, … … . , 𝑣𝑚 − 𝑣𝑚−1  

 Are called first forward differences. If they are denoted by 𝛥𝑣0, 𝛥𝑣1, … … , 𝛥𝑣𝑚−1  

Respectively ,so that if 𝛥𝑣0 = 𝑣1 − 𝑣0,𝛥𝑣1 = 𝑣2 − 𝑣1,… … … . . , 𝛥𝑣𝑚−1 = 𝑣𝑚 − 𝑣𝑚−1  

Where , Δ is called the forward are called second forward differences and are denoted  by𝛥2𝑣0,𝛥2𝑣1, ….   

We can define third forward differences ,fourth etc.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 1.3.2   FORWARD DIFFERENCE TABLE: 

 

𝑢  𝑣   𝛥  𝛥²  𝛥³  𝛥⁴  𝛥⁵   𝛥⁶  

                

𝑢0  𝑣0              

    𝛥𝑣0            

𝑢1  𝑣1    𝛥2𝑣0          

     𝛥𝑣1    𝛥3𝑣0        

       𝑢2  𝑣2    𝛥2𝑣1    𝛥4𝑣0      

     𝛥𝑣2    𝛥3𝑣1    𝛥5𝑣0    

𝑢3  𝑣3    𝛥2𝑣2    𝛥4𝑣1     𝛥6𝑣0  

     𝛥𝑣3    𝛥3𝑣2    𝛥5𝑣1    

𝑢4  𝑣4    𝛥2𝑣3    𝛥4𝑣2      

     𝛥𝑣4    𝛥3𝑣3        

𝑢5  𝑣5    𝛥2𝑣4          

     𝛥𝑣5            

𝑢6  𝑣6              

                

  

  

1.3.3   BACKWARD DIFFERENCES 

The differences 𝑣1 − 𝑣0, 𝑣2 − 𝑣1,… . , 𝑣𝑚 − 𝑣𝑚−1 are called first backward differences if they are denoted 

by 𝛻𝑣1,𝛻𝑣2,… 𝛻𝑣𝑚 respectively, so that 𝛻𝑣1 = 𝑣1 − 𝑣0,𝛻𝑣2 = 𝑣2 − 𝑣1,… 𝛻𝑣𝑚 = 𝑣𝑚 − 𝑣𝑚−1 Where ∇ is called 

the backward difference operator .  

  

 

 



1.3.4   BACKWARD DIFFERENCE TABLE 

 

𝒖      𝒗  𝜵  𝜵²  𝜵³  𝜵⁴  𝜵⁵  𝜵⁶  

                

𝒖𝟎  𝒗𝟎              

    𝜵𝒖𝟏            

𝒖𝟏  𝒗𝟏    𝜵2𝒗𝟐          

        𝜵𝒗𝟐    𝜵𝟑𝒗𝟑        

𝒖𝟐   𝒗𝟐    𝜵𝟐𝒗𝟑    𝜵𝟒𝒗𝟒      

    𝜵𝒗𝟑    𝜵𝟑𝒗𝟒    𝜵𝟓𝒗𝟓    

𝒖𝟑  𝒗𝟑    𝜵𝟐𝒗𝟒    𝜵𝟒𝒗𝟓    𝜵𝟔𝒗𝟔  

    𝜵𝒗𝟒    𝜵𝟑𝒗𝟓    𝜵𝟓𝒗𝟔    

𝒖𝟒  𝒗𝟒    𝜵𝟐𝒗𝟓    𝜵𝟒𝒗𝟔      

    𝜵𝒗𝟓    𝜵𝟑𝒗𝟔        

𝒖𝟓  𝒗𝟓    𝜵𝟐𝒗𝟔          

    𝜵𝒗𝟔            

𝒖𝟔  𝒗𝟔              

                

  

1.3.5   CENTRAL DIFFERENCES  

The central difference operator δ is defined by the relations   

𝑣1 − 𝑣0 = 𝛿𝑣  ,𝑣2 − 𝑣1 = 𝛿 𝑣 , …,   𝑣𝑚 − 𝑣𝑚−1 = 𝛿 𝑣𝑚−12  

Similarly higher order central differences can be defined. 

 

 

 



  1.3.6 CENTRAL DIFFERENCE TABLE 

  

𝒖  𝒗  𝜹  𝜹²  𝜹³  𝜹⁴         δ⁵   𝜹⁶  

                

𝒖𝟎  𝒗𝟎              

    𝜹𝒗  1/2           

𝒖𝟏  𝒗𝟏    𝜹² 𝒗𝟏          

    𝜹𝒗  3/2   𝜹³𝒗  3/2       

𝒖𝟐  𝒗𝟐    𝜹² 𝒗𝟐    𝜹⁴𝒗𝟐      

    𝜹𝒗 5/2   𝜹³𝒗 5/2      δ⁵  𝒗 5/2   

𝒖𝟑  𝒗𝟑    𝜹² 𝒗𝟑    𝜹⁴𝒗𝟑            𝜹⁶𝒗𝟑  

    𝜹𝒗 7/2   𝜹³𝒗  7/2    𝜹𝟓𝒗 7/2   

𝒖𝟒  𝒗𝟒    𝜹² 𝒗𝟒    𝜹⁴𝒗 𝟒      

    𝜹𝒗 9/2   𝜹³𝒗 9/2 

 

      

𝒖𝟓  𝒗𝟓    𝜹𝟐𝒗𝟓          

    𝜹𝒗 11/2 

 

          

𝒖𝟔  𝒗𝟔              

                

  

 

 1.4   SYMBOLIC RELATIONS AND SEPARATIONS OF SYMBOLS  

 

1.4.1   AVERAGE OPERATION 

The averaging operator ‘µ' is defined by the equation μ𝑣𝑡 = 2  (𝑣𝑡+12 + 𝑣𝑡−12)     



1.4.2   SHIFT OPERATION 

The shift operator E is defined by the equation E𝑣𝑡 = 𝑣𝑡+1  

1.4.3   FORMULAS 

 Δ= E-1  

 ∇= 1-E-1  

 δ=  E1/2- E-1/2  

 µ= ½ ( E1/2 – E-1/2 )  

 µ𝟐   

 E = edD  

 

1.5   NEWTON’S FORMULA FOR INTERPOLATION 

 

1.5.1   NEWTON’S FORWARD DIFFERECNCE INTERPOLATION FORMULA 
 

   Given a set  of (m+1) values namely (𝑢0, 𝑣0), (𝑢1, 𝑣1), … (𝑢𝑚, 𝑣𝑚) Of u and v.  

We have to find a Polynomial of the mth degree vm (u).that is v and  vm(u) agree the tabulated 

points let the values of u be equidistant .that is,  Let, 𝑢 = 𝑢0 + 𝑘𝑑.  

Therefore,  

𝑣𝑚(𝑢) = 𝑣0 + 𝑘𝛥𝑢0 +k(k-1)/1!∆2𝑣0 + 𝑘(𝑘−1)(𝑘−2)/2! ∆3𝑣0 + ⋯ + 𝑘(𝑘−1)(𝑘−2)…(𝑘−𝑚+1)/2!Δm 𝑣0  

  

Which is Newton’s forward difference interpolation formula. this formula is useful for  interpolation near 

the beginning of a set of tabular values .  

1.5.2   ERROR IN NEWTON’S FORWARD DIFFERENCES INTERPOLATION FORM   

𝑣(𝑢) − 𝑣𝑚(𝑢) = 𝑘(𝑘−1)((𝑘−2)…!.(𝑘−𝑚)/m! Δm+1 𝑢(𝛼)   , 𝑢0 < 𝛼 < 𝑢𝑚  

1.5.3   NEWTON’S BAKCWARD DIFFERENCE INTERPOLATION FORMULA 

Given a set of (m+1) values , ,(𝑢0, 𝑣0), (𝑢1, 𝑣1)…  (𝑢𝑛,𝑣𝑛) Of u and v. We have to find a Polynomial of the 

mth  degree 𝑣𝑚(𝑢)such that v and 𝑣𝑚 agree at the tabulated points 𝑢𝑚, 𝑢𝑚−1, 𝑢𝑚−2 … 𝑢1, 𝑢0 Let 𝑢 = 𝑢𝑛 + 

𝑘𝑑  

Therefore , 

𝑣𝑚(𝑢) = 𝑣𝑚 + 𝑘𝛻𝑣𝑚 +𝑘(𝑘+1)/2!* ∇2 𝑣𝑚+………….+ 𝑘(𝑘+1)….(𝑘+𝑚−1) ∇m𝑣𝑚  



1.5.4   ERROR IN NEWTON’S BACKWARD DIFFERENCE INTERPOLATION FOR  

𝑣 m+1 𝑣(𝛼)  

  

  

  

  

                              

 

 

 

 

 

 

 

 

 
 
 
 
 



   2. METHODS OF INERPOLATION  
  
2.1  LAGRANGE’S  INTERPOLATION AT REGULAR INTERVAL  
  Let    “ d “ be considered as regular intervals . Then;  

                 bi+1 – bi = d                    i=1,2,……..,m-1    ----    (1)  

 for easy computation it is common to take ‘m’ odd   let ,  

                  u  = bt + dn                                                 ----    (2)  

Here t =(m+1)/2. Thus n=0 equal to the center of the interval of tabular points. From the equation (2) 

Pn(u) and Li(u) be taken as function of n . From this  

                 Li(u) =      (u-b1)...(u-bi-1) (u-bi+1)….(u-bm)            -------(3)  

               (bi-b1)…(bi –bi-1)(bi-bi-1)…(bi-bm)                    [L.I.F]  

Which denote Li(m) is independent of d and thus can be tabulated as function of ‘n’. When we use 

equation (3) and write h(bt + dn) as h(n) the formula of Lagrange’s formula  become    

         h(n)= ∑m
i=1  Li(n) h(bi) + dm km(n)/m!   h(n) 

(
 
Ȿ)   ----- (4)  

         Pm(n) =( n-t +1) (n-t +2 )…n(n+1)…(n+t-1)     -----(5)  

2.1.1   FINITE DIFFERENCE  

Finite differences are used extensively in numerical solutions of partial defferential equation and 

boundary valued problems of ordinary D.E. Using the regular interval points we can define ;   

a) The Pth forward difference of h(u)   

              ∆P h(u) = ∆P-1h(u+d) - ∆P-1h(u)                      P=1,2,3……                ∆oh(u) =h(u)                                               

------(6)  

Example,  

∆1 h(u) = ∆h(u)= h(u+d) – h(u)                               -----(7)  

 ∆2h(u)= ∆ h(u+d)- ∆h(u)=h(u+2d)-2h(u+d)+h(u) ----(8)  

 

  

b) The Pth backward difference   

Ph(u) = P-1 h(u) - P-1h(u-d)                             P = 1, 2……  ------(9 



Oh(u) = h(u)   

  

c)  The Pth Central Difference  

  ꝭPh(u) = ꝭP-1 h(u + ½ d)                                         P = 1,2…..  

ꝭO h(u) = h(u)  

  

From Newton’s forward formula V(n) =  ho + (n)1 ∆ho + (n)2  ∆2 ho +…..   

                     +(n)m∆mho = ∑m
i=0  (n)i ∆iho  

We already knew that this is algebraically equivalent to lagrangian’s  interpolation formula at regular 

interval for m+1 point .bo,…….bn (n)m is a polynomial of difference degree m in n. from equation (7) and (6) 

we equation of finite difference interpolated formula as ;  

V(j)b=∑i=0m (j)I ∆i ho = ∑mi=0 ∑mp=0  (-1)i-P (I  P ) hk   

              ∑m p=o ∑mi=p (-1) i-P (j,i) (I, P) hk        -------------(8)                               j=0….n   

     

2.2 ITERATED INTERPOLATION 

    Iterated interpolation is a sequence of interpolant which is used to overcome the 

disadvantage of Lagrange’s formula and  which is an advantage of finite – difference interpolation 

formula .By using this formula ,in which a  

sequence of interpolants in the Lagrange’s context when going from m to m+1 point. By 

Vm1,….,mk(u) the Lagrangian’s interpolation formula using the point bm1,……,bmp.  It do not want to be 

equally spaced .  

 Then it can be write it as ;  

 V1,2,…m(u) =  1/bm-bm-1     | V1,2,……,m(u) bm-1-u|--------------(1)  

                                          |V1,2,….m(u)     bm-u |  

This can be corrected by looking R.H.S. which is polynomial of degree m-1 then take the value h(bj) at 

point bj  where j=1,…,n     .  

Equation (1)indicates how lagrangian’s formula of order m can be generated from lower order 

formula that given below will give the general formula for equation(1). Vj(u) = h(bj)  

b1         b1-u       v1(u)  

b2      b2-u        v2(u)         v=1,2(u)   



b3      b3-u        v2(u)         v=1,3(u)        v1,2,3(u)  

…………………………………………………………………….  

bn      bm-u        vm(u)         v1,m(u)        v1,2,3(u)          ……….. v1,2,…….m(u)  

  

From this we come to know that we can generate each entries of the table by the previous column by 

analogy with equation (1)  

  

2.3 INVERSE INTERPOLATION 
From previous chapters we shall know about the solution for general equation h(u) = 0 ,the basics of the 

solution be inverse interpolation . the solution h(u)=0 is an example for numerical problem of finding the 

zeroes .In inverse interpolation we see the powerful and straight forward way to find out such zeroes of 

function .  

The functions whose zero we going to find be v = h(u) and suppose it is tabulated at a series of point 

then we have;   

       u         u1            u2  ………        un  

     v=h(u)    h(u1)     h (u2)  ……….      h (un)  

  

Suppose an interval [u1 ,u2 ],h(u) satisfies condition of inverse function theorem . In other way that h’(u) 

≠ 0 then we can write u= s(v) where s is the inverse function to h .   

Therefore , finding values of s(0) is equal to finding a zero of h(u). to calculate s(0) we change the above 

table as   

        v      h (u1)       h (u2)  ………  h (un)  

      u= s(v)            u1         u2  ……..       un  

In interpolation let h (u1) …… h (un) be the tabular point of independent variable v [in regular interval ] 

then let u1 ,……..,un be the function valued point .  

When we use lagrangian’s interpolation formula to approximate s(v) by a polynomial and then 

interpolate at point v=0 we get approximate to β = s(0).  

 2.4  HERMITE INTERPOLATION 
In this section we consider ni= 1       i= 1,…….,t  we take the 1st derivative as well as the function is known 

at t of m tabular point  



h (u) = ∑m
i=1  fi(u) h(bi) + fi(u) h ‘ (bi)+ M(u) = v(u)+M(u)---------(1) v(u) =  ∑         fi(u) h(bi) + ∑     

fi(u) h’ (bi) ---------(2)  

fi (u) fi
-(u) are both polynomials  we required the error term M(u)   

Such that,                  M(bi) = 0              i = 1,2,…..   m                                     M’(bi) 

= 0             i = 1,2,……  s     

 the following condition satisfies the fi(u) and f-(u)  

 fi(bt) = ꝭit     i,t = 1,…,m   

f-
i(bt)  = 0     i =   1…..,s ; t = 1,…..,m  fi(bt)   =0      i 

=  1,….,n ;  t = 1,……,s  f-(bt)   =  ꝭit       i,t = 1, ….., s   

The interpolation formula become ;  

h (u) = ∑  fi(u) h (bi) + ∑ f-
i(u) h’(bi) + pm(u) pt(u)/(m+t)!   h(m+t) (§ )  ---------(3)                 {1-(u-bi) 

[l’it(bi)]}iim(u)lit(u)        

fi(bt) =                                                             i= 1,….,t                  lit(u)  pt(u)/ 

pt(bi)                          i=t+ 1,…., m    

Modified interpolation formula ;  

      Fi
-(u)   = (u-bi )lit (u)   lim (u)                  i  =  1,…….,t   

 When t=m The formula is ;  

          h (u) = ∑  fi(u) h (bi) + ∑ f-
i(u) h’(bi) + pm

2(u) /(2m)!   *h(2m)  (§ ) --------(4)   

 Equation (4) is called hermite interpolation formula and it is also known as oscIlatory interpolation .  

2.5   CENTRAL DIFFERENCE FOR INTERPOLATION FORMULA  
We discussed about Newton’s forward and backward interpolation formulae which is applicable at the 

starting and end of tabular values . the central difference formulae is the most suited for interpolation 

for tabular value set .   

Most important central difference formulae are given below   

2.5.1   GAUSSES CENTRAL DIFFERENCE FORMULA   

    (a)  ; Gauss’s forward formula  : In the below table the central value is tooked as vo  

corresponding to u = uo .The difference used in this formulae are aligned as a line in the table given 

below . the formula is ;  

Vp = vo + Q1 ∆ vo +Q2 ∆2v-1 +Q3 ∆3v-1 + Q4 ∆v4-1 +…….  



Where Q1 ,Q2 ,…….has to be determined. The vp of left can be denoted in terms of vo ,∆vo and higher order 

differences of vo as given below   

  u    v    ∆  ∆2  ∆3  ∆4  ∆5  ∆6  

u-3  v-3              

u-2  v-2  ∆v-3  ∆2 v-3  ∆3 v-3        

u-1  v-1  ∆v-2  ∆2 v-2  ∆3 v-2   ∆4 v-3  ∆5 v-3  ∆6 v-3  

u o  v o  ∆v-1  ∆2 v-1  ∆3 v-1  ∆4 v-2  ∆5 v-2    

u 1  v 1  ∆vo  ∆2 v0  ∆3 v0  ∆4 v-1      

u 2  v 2  ∆v1  ∆2 v1          

u 3  v 3  ∆v2            

  

vp    = £pvo   

      = (1+∆)2vo   

          = vo + p∆vo +p(p-1)/2!  *∆2vo+ p(p-1)(p-2)/3!* ∆3vo+….  

Then the right side become vo, ∆vo and higher order differences .we have ; ∆2v-1 =∆2£-1vo  

               =∆2(1+∆)-1vo  

          = ∆2(1-∆ +∆2- ∆3+…..)vo∆  

               = ∆2vo - ∆3vo +∆4vo-∆5vo +…..  

  

∆3v-1 = ∆3vo - ∆4vo + ∆5 vo - ∆6 vo +……  

∆4v-2  = ∆4vo - 2∆5 v0 +3 ∆6 vo+ … Since the equation becomes  vo + p∆vo +p(p-1)/2!  *∆2vo+ p(p-1)(p-

2)/3!* ∆3vo+ p(p-1)(p-2(p-3)/4! *∆4vo+….  

 = vo + Q1∆vo +Q2( ∆2 vo - ∆3vo+ ∆4vo -  ∆5 vo +……..)  + Q3 (= ∆3vo - ∆4vo + ∆5 vo - ∆6 vo           + ….) + Q4 (∆4vo - 2∆5 

v0 +3 ∆6 vo - 4∆7vo +….)+ ….. ----------(1)  

Equality of coefficient ∆ vo , ∆2vo, ∆3vo etc. in equation (1) we get   

        Q1  = p                                                   Q2 = p(p-1)/2  

- Q2+Q3 = p(p-1)(p∆2 vo -2)/3!    Will give Q3 = (p + 1) p(p-1)/3!       -----------(2)   Q4 = (p + 1) p(p-1) (p-2) 

/4!  etc.   



b) ; Gauss’ s Backward Formulae :  It is used in the given table below by showing the 

differences    

.                  .  

.  .  

.  .  

u-1     v-1             ∆ v-1                                         ∆3 v-2                                        ∆5 v-3             

uo                        vo                ∆ vo                   ∆2 v-1             ∆3 v-1          ∆4 v-2           ∆5 v-2              ∆6 v-3 .                   

.  

.           .  

.    .  

  

then Gauss’s backward formula can be written as   

      vp =   vo + Q’1∆v-1 + Q2’∆2v-1+Q3’∆3v-2+Q4’∆4v-2+…..  

             we have to  findout    Q’1, Q2’,…here. As in the guass’s forward formula we obtain   

                     

  

Q’1   = p  

            Q2’   =    p(p-1)/2!    -----------(3)  

           Q3’    =     p(p-1)(p-2)/3!  

           Q4’    =    p(p-1)(p-2(p-3)/4!              

     

2.5.2    STIRLING FORMULAE 

       

Lets take the average of the gauss’s  backward and forward 

fmulae ,we get ;  

   vp  = vo + p * (∆ v-1  +∆ vo )/2   +  p2 /2 *  ∆2 v-1 + p(p2-1)/3!  * ∆3 v-1 + ∆3 v-2/ 2  

                +  p2(p2-1)/4!  * ∆4 v-2 + …..            -----------(1)             
This is termed as stirlings formulae    



  

2.5.3   BESSEL’S FORMULA  

   

 For practicals interpolation this is commonly used . It use the 

differences showed in below table .In  the bracket  the mean 

value has token .  
.                  .  

.  .  

.  .  

u-1     v-1                             ∆2 v-1                       ∆4 v-2                                             ∆6 v-3 uo                        vo                

∆ vo                        ∆3 v-1                                ∆5 v-2               u1                 v1                                ∆2 v-1                       

∆4 v-1                                             ∆6 v-3  

  

.           .  

.            .  

It can assumed in the form ; vp  =  vo + v1 /2 +  B1∆ vo + B2  * ∆2 v-1 + ∆2 vo / 2 + B3 * ∆3 v-1 + B4* ∆4 v-2  

+ ∆4 v-1  /2  

            

       =  vo  +[ B1   + ½ ] + B2  * ∆2 v-1 + ∆2 vo / 2 + B3 * ∆3 v-1 + B4* ∆4 v-2  + ∆4 v-1  /2  

By the reference of gausses forward formulae   

     B1   + ½  = p                            B2 = p(p-1)/2!    

                                                                                                        -----------(2)  

   B3  =   p(p-1)[ p – ½ ] /3!          B4  = p(p-1)(p+1(p-1)/4!  

  

Then the formulae become   



    vp = vo + p∆ vo + p(p-1)/2!  *  ∆2 v-1 + ∆2 vo / 2 + p(p-1)[ p – ½ ] /3! *∆3 v-1   

                   +  p(p-1)(p+1(p-1)/4! * ∆4 v-2  + ∆4 v-1  /2 +…..   

  

2.5.4  EVERETT FORMULA 

 Here the even ordered differences are only used and interpolation formulae are given below ;            

uo                        vo               -        ∆2 v-1             -          ∆4 v-2           -              ∆6 v-3 u1                 v1                 

-           ∆2 v-1         -          ∆4 v-1           -                    ∆6 v-2 the formula is ;  

       £o = 1 – p = q                                   Fo = p   

        £2 = q*(q2 – 12 )  /3!                      F2  = p(p2-12) /3!  

        £4 =  q*(q2 – 12 )( q2 – 22)/5!         F4 = =  p*(p2 – 12 )( p2 – 22)/5!    

                     …………  

    Hence the formulae become   

Vp  = qvo  + q*(q2 – 12 )  /3! *∆2 v-1  +  q*(q2 – 12 )( q2 – 22)/5! *  ∆4 v-2 + ….  

         +  pv1  + p(p2-12) /3! *∆2 vo + p*(p2 – 12 )( p2 – 22)/5!   *∆4 v-1 +…..  ----(1)     

  

2.5.5 Relation between Basseles and Everetts formulae   

Vp  =  vo + p∆vo + p(p-1)/2! . ∆2 v-1 +∆2 vo /2 +   p(p-1)[ p – ½ ] /3! *∆3 v-1   

          + p(p-1)(p+1)(p-2)/4! *∆4 v-2  + ∆4 v-1 /2 +…..  

     

       = vo + p(v1-vo ) + p∆vo + p(p-1)/2! . ∆2 v-1 +∆2 vo /2 +   p(p-1)[ p – ½ ] /3! *∆3 v-1            + p(p-1)(p+1)(p-

2)/4! *∆4 v-2  + ∆4 v-1 /2 +…..  

  Then simplifying this ;   

            Vp = (1-p ) vo + [    p(p-1) /4 +    p(p-1) [ p – ½ ]/6 * ∆2 vo  ]+ pv1 +  

                         [    p(p-1) /4 +    p(p-1) [ p – ½ ]/6 * ∆2 vo  ]* ∆2 vo    

   = qvo  + q*(q2 – 12 )  /3! ∆2 vo  + pv1 + p(p2-12) /3! ∆2 vo    

   



CHAPTER – 3  

INTERPOLATION WITH UNEQUAL INTERVALS 

 

3.1. INTRODUCTION 

In this chapter, we are going to find Interpolation with unequal intervals. If the values of u's are 

given at unequal intervals, our Newton's forward, backward and central difference interpolation formula 

will not be true. Therefore we bring a new idea of divided differences.  

 

3.2. DIVIDED DIFFERENCES 

Consider the function v=h(u) . Let the values h(u0),h(u1),….,h(um) corresponding to the arguments 

u0,u1 ,…,um respectively, where the intervals u1-u0,u2-u1,…,um-um-1 need not be equal.  

The first divided difference of h(u) for u0,u1 is denoted by h(u0,u1) or [u0,u1] . 

h(u0,u1)= [u0,u1]=  
h(u1)−h(u0)

u1−u0
 

h(u1,u2)= 
h(u2)−h(u1)

u2−u1
 

h(um-1,um)= 
h(u_m)−h(𝑢𝑚−1)

um−um−1
 , m = 1,2, … , m 

The second divided difference of h(u) for u0,u1,u2 is  

     h(u0,u1,u2)= 
h(u1,u2)−h(u0,u1)

u2−u0
 

The third divided difference of h(u) for u0,u1,u2,u3 is 

     h(u0,u1,u2,u3)= 
ℎ(𝑢1,𝑢2,𝑢3)−ℎ(𝑢0,𝑢1,𝑢2)

𝑢3−𝑢0
 

 

Argument Entry First 
divided 
difference  

Second 
divided 
difference  

Third divided 
difference  

     

u0 h(u0) h(u0,u1) 
h(u1,u2) 
h(u2,u3) 
h(u3,u4) 
 

  

u1 h(u1) h(u0,u1,u2)  

u2 h(u2) h(u1,u2,u3) h(u0,u1,u2,u3) 

u3 h(u3) h(u2,u3,u4) h(u1,u2,u3,u4) 
u4 h(u4)   

 

Example 3.1 : Find the divided difference of h(u)= u³+u²+2 for the arguments 2,4,7,12. 



 Solution :  

 

     u     h(u) First div diff. Second div diff. Third div diff. 
              

   2 
 
    4 
 
    7 
    
   12 

   4  
 
  70 
 

70 − 12

4 − 2
= 29 

 

 
94−29

7−2
= 13 

  352   23 − 13

12 − 2
= 1 

  1742 352 − 70

7 − 4
= 94 

 

278 − 94

12 − 4
=  23 

 

 1742 − 352

12 − 7
= 278 

  

 

3.3. PROPERTIES OF DIVIDED DIFFERENCE 

Property 1 : The value of any divided difference does not depend on the order of the argument. Divided 

difference are symmetrical.  

h(u0,u1) = 
h(u1)−h(u0)

u1−u0
=

h(u0)−h(u1)

u0−u1
          =h(u1 ,u0)                    … (1) 

h(u0,u1) =
h(u0)

u0−u1
−

h(u1)

u0−u1
=

h(u0)

𝑢0−𝑢1
+

h(u1)

𝑢1−𝑢0
                                                         … (2) 

 

Similarly, 

h(u1,u0) = 
h(u1)

u1−u0
+

h(u0)

𝑢0−𝑢1
                                                                                        … (3) 

From (2) and (3), we get, 

        h(u0,u1) = h(u1,u0) 

Similarly, 

h(u0,u1,u2) = 
ℎ(𝑢1,𝑢2)−ℎ(𝑢0,𝑢1)

𝑢2−𝑢0
 

                     =
1

𝑢2−𝑢0
[[

ℎ(𝑢1)

𝑢1−𝑢2
+

ℎ(𝑢2)

𝑢2−𝑢1
] − [

ℎ(𝑢0)

𝑢0−𝑢1
+

ℎ(𝑢1)

𝑢1−𝑢0
]] 

                     =
1

𝑢2−𝑢0
[[

1

𝑢1−𝑢2
−

1

𝑢1−𝑢0
] ℎ(𝑢1) +

ℎ(𝑢2)

𝑢2− 𝑢1
−

ℎ(𝑢0)

𝑢0−𝑢1
] 

                      = 
ℎ(𝑢0)

(𝑢0−𝑢1)(𝑢0−𝑢2)
+

ℎ(𝑢1)

(𝑢1− 𝑢0)(𝑢1− 𝑢2)
+

ℎ(𝑢2)

(𝑢2−𝑢0)(𝑢2−𝑢1)
                   … (4) 

From (4), we have , h(u0,u1,u2)= h(u1,u0,u2)= h(u1,u2,u0)= …. 



By mathematical induction,we can show that 

h(u0,u1,u2,….,um)= 
ℎ(𝑢0)

(𝑢0− 𝑢1)(𝑢0−𝑢2)…(𝑢0−𝑢𝑚)
+

ℎ(𝑢1)

(𝑢1−𝑢0)(𝑢1−𝑢2)…(𝑢1−𝑢𝑚)
+

ℎ(𝑢2)

(𝑢2−𝑢0)(𝑢2− 𝑢1)..(𝑢2−𝑢𝑚)
+ ⋯ +

           :                            
ℎ(𝑢𝑚)

(𝑢𝑚−𝑢0)(𝑢𝑚−𝑢1)…(𝑢𝑚−𝑢𝑚−1)
 

 

Therefore,w.r.t any two arguments,divided differences are symmetrical. 

Property2 : Operator ∆ is linear. 

Proof : 

 let h(u) and p(u) be two functions and let 𝛾 and  𝛿 be two  Constants , then  

∆[γh(u) + δp(u) =
[[γh(u1) + δp(u1)] − [γh(u0) + δp(u0)]]

𝑢1 − 𝑢0
     

           = 
𝛾( ℎ(𝑢1)−ℎ(𝑢0))

𝑢1−𝑢0
+

𝛿(𝑝(𝑢1)−𝑝(𝑢0))

𝑢1−𝑢0
 

            = 𝛾∆ℎ(𝑢) + 𝛿∆𝑝(𝑢) 

Property 3 : The m-th divided difference of an m-th digree polynomial is constant. 

Proof :  

Let h(u)= um, m is a positive integer  

h(u0, u1) =
h(u1) − h(u0)

u1 − u0
=

u1
m − u0

m

u1 − u0
 

                                     =u1
m−1 + u0u1

m−2 + u0
2u1

m−3 + ⋯ + u0
m−1 

                                     = a polynomial of degree (m-1) and symmetrical in u0,u1 with leading coefficient 1. 

H(u0, u1, u2) =
h(u1,u2)−h(u0,u1)

u2−u0
    

=
(𝑢2

𝑚−1 + 𝑢1𝑢2
𝑚−2 + ⋯ + 𝑢1

𝑚−1) − (𝑢0
𝑚−1 + 𝑢1𝑢0

𝑚−2 + ⋯ + 𝑢1
𝑚−1)

𝑢2 − 𝑢0
 

=
𝑢2

𝑚−1 − 𝑢0
𝑚−1

𝑢2 − 𝑢0
+

𝑢1(𝑢2
𝑚−2 − 𝑢0

𝑚−2)

𝑢2 − 𝑢0
+ ⋯ +

𝑢1
𝑚−2(𝑢2 − 𝑢0)

𝑢2 − 𝑢0
 

= (𝑢2
𝑚−2 + 𝑢0𝑢2

𝑚−3 + ⋯ + 𝑢0
𝑚−2) + 𝑢1(𝑢2

𝑚−3 + 𝑢0𝑢2
𝑚−4 + ⋯ + 𝑢0

𝑚−3) + ⋯ + 𝑢1
𝑚−2 

=Polynomial of degree (m-2) and symmetrical in u0,u1,u2 with leading coefficient 1. 

Continuing this way,the t-th divided difference of um  will be a polynomial of degree (m-r) and 

symmetrical in u0,u1,…,ut with leading coefficient 1. 

Hence the m-th divided difference of um will be a polynomial of degree 0 with leading coefficient 1. 

That is ,∆m um =1 



             ∆m+jum = 0 for j = 1,2, … 

Hence,∆𝑚(𝑎0𝑢𝑚 + 𝑎1𝑢𝑚−1 + ⋯ + 𝑎𝑚) 

         =    𝑎0∆𝑚𝑢𝑚 +  𝑎1∆𝑚𝑢𝑚−1 + ⋯ + ∆𝑚𝑎𝑛 

         =     𝑎0. 1 + 0 + ⋯ + 0 =  𝑎0 

 

3.4. RELATION BETWEEN DIVIDED DIFFERENCE AND FORWARD DIFFERENCE. 

If u0, u1, u2, … . are equally spaced, then u1 − u0 = u2 − u1 = u3 − u2 = ⋯ = um − um−1 =d 

ℎ(𝑢1, 𝑢0) =
ℎ(𝑢1) − ℎ(𝑢0)

𝑢1 − 𝑢0
=

∆ℎ(𝑢0)

𝑑
 

ℎ(𝑢0) =
ℎ(𝑢1) − ℎ(𝑢0)

𝑢2 −  𝑢0
=

1
𝑑

∆ℎ(𝑢1) −
1
𝑑

∆ℎ(𝑢0)

2𝑑
 

                       = 
1

2𝑑2 ∆2ℎ(𝑢0) 

Similarly , ℎ(𝑢0) =
∆3ℎ(𝑢0)

3𝑑3  

                 ℎ(𝑢0) =
∆𝑚ℎ(𝑢0)

𝑚𝑑𝑚  

THEOREM : Newton’s interpolation formula for unequal intervals / Newton’s divided difference formula 

             Let v=h(u) 

It takes the values h(u0), h(u1), … h(um) corresponding to u0, u1, … um. We  

know that h(u, u0) =
h(u) − h(u0)

u − u0
 

Therefore, h(u) = h(u0) + (u − u0)h(u, u0)                … (1) 

   similarly, h(u, u0, u1) =
h(u, u0) − h(u0, u1)

u − u1
 

therefore, h(u, u0) = h(u0, u1) + (u − u1)h(u, u0, u1) 

substitute h(u, u0) in (1) 

h(u) = h(u0) + (u − u0)h(u0, u1) + (u − u0)(u − u1)h(u, u0, u1)                 … (2) 

Again h(u, u0, u1, u2) =
h(u, u0, u1) − h(u0, u1, u2)

u − u2
 

therefore, h(u, u0, u1) = h(u0, u1, u2) + (u − u2)h(u, u0, u1, u2)  

substitute, h(u, u0, u1) in (2) 



h(u) = h(u0) + (u − u0)h(u0, u1) + (u − u0)(u − u1)h(u0, u1, u2)

+ (u − u0)(u − u1)(u − u2)h(u, u0, u1, u2)       … . (3) 

ccontinuing in this way, we get 

h(u) = h(u0) + (u − u0)h(u0, u1) + (u − u0)(u − u1)h(u0, u1, u2)

+ (u − u0)(u − u1)(u − u2)h(u, u0, u1, u2) + ⋯

+ (u − u0)(u − u1) … (u − um−1)h(u0, u1, … , um)

+ (u − u0)(u − u1) … (u − um)h(u0, u1, … , um)                       … (4) 

 

If h(u) is a polynomial of degree m, then h(u, u0, u1, … , um) = 0 

hence (4) becomes , 

h(u) = h(u0) + (u − u0)h(u0, u1) + (u − u0)(u − u1)h(u0, u1, u2) + ⋯

+ (u − u0)(u − u1) … (u − um−1)h(u0, u1, … , um)                         … (5) 

(5)is called Newton’s divided difference interpolation formula for unequal intervals. 

 Example 3.2 : From the following table, find h(u) and hence find h(5) using Newton’s interpolation 

formula  

u 2 3 8 9 

h(u) 2 6 6 5 

 

Solution : 

      u    h(u) First div diff. Second div diff. Third div diff. 
     

2 
 
3 
 
8 
 
9 

2 6 − 2

3 − 2
= 4 

  

6    

 
6 

6 − 6

8 − 3
= 0 

0 − 4

8 − 2
= −

2

3
 (−

1
6

) + (
2
3

)

9 − 2
=

1

14
 

 
5 

(5 − 6)

9 − 8
= −1 

−1 − 0

9 − 3
= −

1

6
 

 

 

𝐵𝑦 𝑁𝑒𝑤𝑡𝑜𝑛′𝑠 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑓𝑜𝑟 𝑢𝑛𝑒𝑞𝑢𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 

ℎ(𝑢) = ℎ(𝑢0) + (𝑢 − 𝑢0)ℎ(𝑢0, 𝑢1) + (𝑢 − 𝑢0)(𝑢 − 𝑢1)ℎ(𝑢0, 𝑢1, 𝑢2) + ⋯ 

= 2 + (𝑢 − 2)4 + (𝑢 − 2)(𝑢 − 3) (−
2

3
) + (𝑢 − 2)(𝑢 − 3)(𝑢 − 8) (

1

14
) 

=
1

42
[ 2 + 4𝑢 − 8 + (𝑢2 − 5𝑢 + 6)(−28) + (𝑢2 − 5𝑢 + 6)(𝑢 − 8)(3)] 

              =
1

42
[4𝑢 − 6 + (−28𝑢2 + 140𝑢 − 168) + (𝑢3 − 5𝑢2 + 6𝑢 − 8𝑢2 + 40𝑢 − 48)] 



=
1

42
[4𝑢 − 6 + (−28𝑢2 + 140𝑢 − 168) + (3𝑢3 − 39𝑢2 + 138𝑢 − 144)] 

ℎ(𝑢) =
1

42
[3𝑢3 − 67𝑢2 + 282𝑢 − 318] 

ℎ(5) =
1

42
[372 − 1675 + 1410 − 318] 

   =
1

42
[1782 − 1993] =  −

211

42
 

                                                                    = 5.02381 

 

3.5. LAGRANGE ‘S INTERPOLATION FORMULA [FOR UNEQUAL INTERVALS] 

                When the values of independent variable are not equally spaced ,also when the difference 

between the dependent variable are not small, we use Lagrange’s interpolation formula. 

Let v=h(u) be a function such that h(u) has values v0, v1, v2, … , vm corresponding to u =

u0, u1, u2, … , um. 

 There are (m+1) paired values (uj, vj), j = 0,1,2, … , m. 

Therefore,h(u) can be represented as a polynomial of degree m in u. 

Let  

ℎ(𝑢) = 𝑎0(𝑢 − 𝑢1)(𝑢 − 𝑢2) … (𝑢 − 𝑢𝑚) + 𝑎1(𝑢 − 𝑢0)(𝑢 − 𝑢2)(𝑢 − 𝑢3) … (𝑢 − 𝑢𝑚)

+ 𝑎2(𝑢 − 𝑢0)(𝑢 − 𝑢1)(𝑢 − 𝑢3) … (𝑢 − 𝑢𝑚) + ⋯

+ 𝑎𝑗(𝑢 − 𝑢0)(𝑢 − 𝑢1) … (𝑢 − 𝑢𝑗−1)(𝑢 − 𝑢𝑗+1). . (𝑢 − 𝑢𝑚) + ⋯

+ 𝑎𝑚(𝑢 − 𝑢0)(𝑢 − 𝑢1) … (𝑢 − 𝑢𝑚−1)       … (1) 

It is true for all values of u. 

sub u = u0and v =  v0 in (1), we get,6 

v0 = a0(u0 −  u1)(u0 − u2) … (u0 − um) 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 , 𝑎0 =
𝑣0

(𝑢0 − 𝑢1)(𝑢0 − 𝑢2) … (𝑢0 − 𝑢𝑚)
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑙𝑒𝑡 𝑢 = 𝑢1, 𝑣 = 𝑣1, 𝑤𝑒 𝑔𝑒𝑡 

𝑎1 =
𝑣1

(𝑢1 − 𝑢0)(𝑢1 − 𝑢2)(𝑢1 − 𝑢3) … (𝑢1 − 𝑢𝑚)
 

Continuing this way ,we get 

𝑎𝑚 =
𝑣𝑚

(𝑢𝑚 − 𝑢0)(𝑢𝑚 − 𝑢1) … (𝑢𝑚 − 𝑢𝑚−1)
 

Substitute this values in (1), we have, 



𝑣 = ℎ(𝑢) =
(𝑢 − 𝑢1)(𝑢 − 𝑢2) … (𝑢 − 𝑢𝑚)

(𝑢0 − 𝑢1)(𝑢0 − 𝑢2) … (𝑢0 − 𝑢𝑚)
. 𝑣0 +

(𝑢 − 𝑢0)(𝑢 − 𝑢2) … (𝑢 − 𝑢𝑚)

(𝑢1 − 𝑢0)(𝑢1 − 𝑢2) … (𝑢1 − 𝑢𝑚)
. 𝑣1 + ⋯

+
(𝑢 − 𝑢0)(𝑢 − 𝑢1) … (𝑢 − 𝑢𝑗−1)(𝑢 − 𝑢𝑗+1) … (𝑢 − 𝑢𝑚)

(𝑢𝑗 − 𝑢0)(𝑢𝑗 − 𝑢1) … (𝑢𝑗 − 𝑢𝑗−1)(𝑢𝑗 − 𝑢𝑗+1) … (𝑢𝑗 − 𝑢𝑚)
 . 𝑣𝑗 + ⋯

+
(𝑢 − 𝑢0)(𝑢 − 𝑢1) … . (𝑢 − 𝑢𝑚−1)

(𝑢𝑚 − 𝑢0)(𝑢𝑚 − 𝑢2) … (𝑢𝑚 − 𝑢𝑚−1)
. 𝑣𝑚             … … (2) 

(2) is called Lagrange’s interpolation formula for unequal intervals. 

Example 3.3 : Using Lagrange’s interpolation formula , find h(10.5) from the given table. 

u 8 9 10 11 

h(u) 4 2 2 10 

 

Solution :  

By Lagrange’s formula, 

𝑣 = ℎ(𝑢) =
(𝑢 − 9)(𝑢 − 10)(𝑢 − 11)

(8 − 9)(8 − 10)(8 − 11)
× 4 +

(𝑢 − 8)(𝑢 − 10)(𝑢 − 11)

(9 − 8)(9 − 10)(9 − 11)
× 2

+
(𝑢 − 8)(𝑢 − 9)(𝑢 − 11)

(10 − 8)(10 − 9)(10 − 11)
× 2 +

(𝑢 − 8)(𝑢 − 9)(𝑢 − 10)

(11 − 8)(11 − 9)(11 − 10)
× 10 

  ℎ(10.5) =
(1.5)(0.5)(−0.5)

(−1)(−2)(−3)
× 4 +

(2.5)(0.5)(−0.5)

(1)(−1)(−2)
× 2 +

(2.5)(1.5)(−0.5)

(2)(1)(−1)
× 2 +

(2.5)(1.5)(0.5)

(3)(2)(1)
× 10 

                 =0.25-0.625+1.875+3.125 

                 =4.625 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

  

 

 4.  SPLINE INTERPOLATION 
we have so far discussed to find  m-th order polynomial passing through (n+1) given data points 

using various methods. 

It is important to note that while these methods can be useful in finding an approximate 

function that passes through the given data points, they may not always be accurate or suitable 

for all situations. Therefore, it is important to carefully consider the underlying assumptions and 

limitations of each method before applying them to real-world problems. 

In spline interpolation, the interpolating function is represented by a piecewise polynomial 

function, where each polynomial is defined on a subinterval of the given data points. These 

polynomials are typically chosen to be of low degree, such as cubic or quadratic, and are 

smooth at the points where they meet, ensuring that the overall interpolating function is also 

smooth. 

There are various types of spline used in interpolation, including   natural splines, clamped 

splines, and periodic splines, each with their own set of properties and characteristics. The 

choice of which spline to use depends on the specific requirements of the problem at hand. 

 

4.1  LINEAR SPLINES 

Let the given data points be  (𝑢𝑗 , 𝑣𝑗),                                                                             

                                                    𝑗 = 0,1,2, … 𝑚                                                                            (1) 

Where,  𝑎 = 𝑢0 < 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑛 = 𝑏 

and let  𝑑𝑗 =  𝑢𝑗 − 𝑢𝑗−1 ,          𝑗 = 1,2, … , 𝑚 

Further, let 𝑠𝑗(𝑢) be the spline of degree one defined in the interval [𝑢𝑗−1, 𝑢𝑗]. Obviously, 𝑠𝑗(𝑢) 

represents a straight line joining the points(𝑢𝑗−1, 𝑣𝑗−1) and (𝑢𝑗 , 𝑣𝑗). Hence, we write 

                          𝑠𝑗(𝑢) = 𝑣𝑖−1 + 𝑘𝑗(𝑢 − 𝑢𝑗−1)                                                                (2) 

Where,  

                  Slope, 𝑘𝑗 =
𝑣𝑗−𝑣𝑗−1

𝑢𝑗−𝑢𝑗−1
 



                                                                      Where, j = 1, 2 ,...,m  

 we obtain different splines of degree one valid in the subintervals I to m, respectively. It is clear 

that 𝑠𝑗(𝑢) is continuous at both the end points. 

Example:4.1.1 

  Given the set of data points (1,-8) (2,-1) and (3,18) satisfying the function v = h(u), find the 

linear splines satisfying the given data. Determine the approximate values of v(2.5) and v'(2).  

>> Let the given points be P(1, - 8)  Q(2, - 1) and R(3,18)  

Equation of PQ is 

𝑠1(𝑢) =  −8 + (𝑢 − 1)7 

                       =  7𝑢 − 15 

and equation of QR is 

𝑠2(𝑢) =  −1 + (𝑢 − 2)19 

                      = 19𝑢 − 39 

Since u = 2.5 belongs to the interval [2, 3], we have 

𝑣(2.5) ≈ 𝑠2(2.5) = 19(2.5) − 39 

                 = 8.5 

And 

 𝑣′(2.0) ≈  𝑘1 = 19 

It is easy to check that the splines 𝑠𝑗(𝑢)are continuous in [1, 3] but their slopes are 

discontinuous. This is clearly a drawback of linear splines. 

 

4.2  QUADRATIC SPLINES 

With reference to the data points given linear splines (1) such that, (𝑢𝑗 , 𝑣𝑗) , 𝑤ℎ𝑒𝑟𝑒 𝑗 =

1,2, … , 𝑚. Let 𝑠𝑗(𝑢) be the quadratic spline approximating the function 𝑣 = ℎ(𝑢) in the interval 

[𝑢𝑗−1, 𝑢𝑗], where 

 𝑢𝑗 − 𝑢𝑗−1 =  𝑑𝑗 . 

Let 𝑠𝑗(𝑢) and 𝑠𝑗
′(𝑢) be continuous in [𝑢0, 𝑢𝑚] and let 

                              𝑠𝑗(𝑢𝑗) =  𝑣𝑗 ,         𝑖 = 0,1,2, … , 𝑚                                                                         (3)        



Since 𝑠𝑗(𝑢) is a quadratic in [𝑢𝑗−1, 𝑢𝑗], it follows that 𝑠𝑗
′(𝑢) is a linear function and therefore we 

write 

                         𝑠𝑗
′(𝑢) =

1

𝑑𝑗
[(𝑢𝑗 − 𝑢)𝑚𝑖−1 + (𝑢 − 𝑢𝑗−1)𝑘𝑗],                                                          (4)        

 

                                    Where, 𝑘𝑗 =  𝑠𝑗
′(𝑢𝑗) 

Integrating the equation 𝑠𝑗
′(𝑢) with respect to 𝑢, we obtain  

𝑠𝑗(𝑢) =
1

𝑑𝑗
[−

(𝑢𝑗−𝑢)
2

2
 𝑘𝑗−1 +

(𝑢−𝑢𝑗−1)
2

2
𝑘𝑗] + 𝑐𝑗 

                                                                                                                                                                         (5)                  

 

where 𝑐𝑗 are constants to be determined. Substitute 𝑢 =  𝑢𝑗−1, then we get 

𝑐𝑗 =  𝑣𝑗−1 +
1

𝑑𝑗
×

𝑑𝑗
2

2
𝑘𝑗−1 =  𝑣𝑗−1 +

𝑑𝑗

2
𝑘𝑗−1 

Hence we get, 

𝑠𝑗(𝑢) =
1

𝑑𝑗
[−

(𝑢𝑗 − 𝑢)
2

2
𝑘𝑗−1 +

(𝑢 − 𝑢𝑗−1)
2

2
𝑘𝑗] + 𝑣𝑗−1

+
𝑑𝑗

2
𝑘𝑗−1                                                                                                                      (6) 

Still here the value of 𝑘𝑗 is unknown. To determine the 𝑘𝑗, we use the condition of continuity of 

the function since the first derivatives are already continuous. For the continuity of the function 

𝑠𝑗(𝑢) at 𝑢 = 𝑢𝑗 , we must have 

𝑠𝑗(𝑢𝑗 −) =  𝑠𝑗+1(𝑢𝑗 +) 

 

Therefore we obtain, 

                   𝑠𝑗(𝑢𝑗 −) =
𝑑𝑗

2
𝑘𝑗 + 𝑣𝑗−1 +

𝑑𝑗

2
𝑘𝑗−1  =

𝑑𝑗

2
(𝑘𝑗−1 + 𝑘𝑗) + 𝑣𝑗−1                                       (7) 

Further, 

 

𝑠𝑗+1(𝑢) =
1

𝑑𝑗+1
[−

(𝑢𝑗+1 − 𝑢)
2

2
𝑘𝑗 +

(𝑢 − 𝑢𝑗)
2

2
𝑘𝑗+1] + 𝑣𝑗 +

𝑑𝑗+1

2
𝑘𝑗  



 and  therefore 

𝑠𝑗+1(𝑢𝑗 +) =  −
𝑑𝑗+1

2
𝑘𝑗 + 𝑣𝑗 +

𝑑𝑗+1

2
𝑘𝑗 

                                                                        = 𝑣𝑗                                                                                      (8) 

Equating 𝑠𝑗(𝑢𝑗 −) and 𝑠𝑗+1(𝑢𝑗 +), we get the recurrence relation 

                          𝑘𝑗−1 +  𝑘𝑗 =
2

𝑑𝑗
 (𝑣𝑗 − 𝑣𝑗−1),                                                                                           (9) 

                                      𝑗 = 1,2, … , 𝑚 

 

for the spline first derivatives 𝑘𝑗, the above equation constitute m equations in (m+1) 

unknowns, viz, 𝑘0 , 𝑘1, … , 𝑘𝑚. Hence, we require one more condition to determine the 

𝑘𝑗 uniquely. There are several ways of choosing this condition. One natural way is to 

choose 𝑠1"(𝑢1) = 0, since the mechanical spline straightens out in the end intervals. Such a 

spline is called a natural spline. Differentiating equation (6)  twice with respect to u, we obtain 

𝑠𝑗"(𝑢) =
1

𝑑𝑗
(−𝑘𝑗−1 + 𝑘𝑗) 

Or.                                                         𝑠1"(𝑢1) =
1

𝑑1
(𝑘1 − 𝑘0) 

Hence, we have the additional condition as 

                                                                   𝑘0 =  𝑘1                                                                                (10) 

Therefore, equations. (9) and (10) can be solved for 𝑘𝑗 , which when substituted in (6) gives the 

required quadratic spline.  

 

4.3. CUBIC SPLINES 

We consider the same set of data points, viz., the data defined in (4.1), and let 𝑠𝑗(𝑢) be the 

cubic spline defined in the intervel [𝑢𝑗−1, 𝑢𝑗]. There are some conditions for the natural cubic 

splines such as 

(i) 𝑠𝑗(𝑢) is almost a cubic in each subinterval [𝑢𝑗−1, 𝑢𝑗],      𝑗 = 1,2, … , 𝑚 

(ii) 𝑠𝑗(𝑢) =  𝑣𝑗 ,   𝑗 = 0,1,2, … , 𝑚 

(iii) 𝑠𝑗(𝑢), 𝑠𝑗
′(𝑢),  and 𝑠𝑗"(𝑢) are continuous in [𝑢0, 𝑢𝑚] and  

(iv) 𝑠𝑗"(𝑢0) =  𝑠𝑗"(𝑢𝑚) = 0 



 

To derive the governing equations of the cubic spline, we observe that the spline second 

derivatives must be linear.  

Hence, we have in [𝑢𝑗−1, 𝑢𝑗]: 

𝑠𝑗"(𝑢) =
1

𝑑𝑗
[(𝑢𝑗 − 𝑢)𝐾𝑗−1 + (𝑢 − 𝑢𝑖−1)𝐾𝑗 ]                                                                 (11) 

Where 𝑘𝑗 = 𝑢𝑗 − 𝑢𝑗−1 and 𝑠𝑗"(𝑢𝑗) = Kj, for all i. Obviously, the spline second derivatives are 

continuous. Integrating the above equation twice with respect to u, we get 

𝑠𝑗(𝑢) =
1

𝑑𝑗
[
(𝑢𝑗 − 𝑢)

3

6
𝐾𝑗−1 +

(𝑢 − 𝑢𝑗−1)
3

6
𝐾𝑗] + 𝑐𝑗(𝑢𝑗 − 𝑢) + 𝑏𝑗(𝑢 − 𝑢𝑗−1)                  (12) 

where 𝑐𝑗 and 𝑏𝑗 are constants to be determined. 

 Using conditions 𝑠𝑗(𝑢𝑗−1) =  𝑣𝑗−1 and 𝑠𝑗(𝑢𝑗) =  𝑣𝑗 , we immediately obtain  

𝑐𝑗 =
1

𝑑𝑗
(𝑣𝑗−1 −

𝑑𝑗
2

6
𝐾𝑖−1) and 𝑏𝑗 =

1

𝑑𝑗
(𝑣𝑗 −

𝑑𝑗
2

6
𝐾𝑗) 

Substituting for 𝑐𝑗 and 𝑏𝑗  in (4.12), we obtain 

𝑠𝑗(𝑢) =
1

𝑑𝑗
[
(𝑢𝑗 − 𝑢)

3

6
𝐾𝑗−1 +

(𝑢 − 𝑢𝑗−1)
3

6
𝐾𝑗 

+ (𝑣𝑗−1 −
𝑑𝑗

2

6
 𝐾𝑗−1) (𝑢𝑗 − 𝑢) 

                                                       + (𝑣𝑗 −
𝑑𝑗

2

6
𝐾𝑗) (𝑢 − 𝑢𝑗−1)                                                         (13) 

 

In the above equation,  the spline second derivatives, 𝑘𝑗  are still unknown. To determine them, 

we use the condition of continuity of 𝑠𝑗′(𝑢). From (13), we obtain by differentiation: 

𝑠𝑗′(𝑢) =
1

𝑑𝑗
[−

3(𝑢𝑗 − 𝑢)
2

6
𝐾𝑗−1 +

3(𝑢 − 𝑢𝑗−1)
2

6
𝐾𝑗 − (𝑣𝑗−1 −

𝑑𝑗
2

6
𝐾𝑗−1) + (𝑣𝑗 −

𝑑𝑗
2

6
𝐾𝑗)] 

Setting 𝑢 = 𝑢𝑗 in the above, we obtain the left-hand derivatives 



𝑠𝑗′(𝑢𝑗 − ) =
𝑑𝑗

2
𝐾𝑗 −

1

𝑑𝑗
(𝑣𝑗−1 −

𝑑𝑗
2

6
𝐾𝑗−1) +

1

ℎ𝑗
(𝑣𝑗 −

𝑑𝑗
2

6
𝐾𝑗)

=
1

𝑑𝑗
(𝑣𝑗 − 𝑣𝑗−1) +

𝑑𝑗

6
𝐾𝑗−1 +

𝑑𝑗

3
𝐾𝑗                                                   (14) 

                (𝑗 = 1,2, … , 𝑚) 

To obtain the right-hand derivative, we need first to write down the equation of the cubic 

spline in the subinterval (𝑢𝑗 , 𝑢𝑗+1). We do this by setting 𝑗 = 𝑗 + 1 in equation (13)   

 𝑠𝑗+1(𝑢) =
1

ℎ𝑗+1
[

(𝑢𝑗+1− 𝑢)
3

6
𝐾𝑗 +

(𝑢−𝑢𝑗)
3

6
𝐾𝑗+1 + (𝑣𝑗 −

𝑑𝑗+1
2

6
𝐾𝑗) (𝑢𝑗+1 − 𝑢) + (𝑣𝑗+1 −

                        
ℎ𝑗+1

2

6
𝐾𝑗+1) (𝑢 − 𝑢𝑗)]                                                                                               (15) 

where 𝑑𝑗+1 =  𝑢𝑗+1 − 𝑢𝑗 . Differentiating the above equation and setting 𝑢 =  𝑢𝑗, we obtain the 

right-hand derivative at 𝑢 = 𝑢𝑗 

𝑠𝑗+1′(𝑢𝑗 +) =
1

ℎ𝑗+1
(𝑣𝑗+1 − 𝑣𝑗) −

𝑑𝑗+1

3
𝐾𝑗 −

𝑑𝑗+1

6
𝐾𝑗+1                                                         (16)       

    (𝑗 = 0,1, … , 𝑚 − 1) 

Equating the equations  (4.14) and (4.16), we get  the recurrence relation 

𝑑𝑗

6
𝐾𝑗−1 +

1

3
(𝑑𝑗 + 𝑑𝑗+1)𝑀𝑗 +

𝑑𝑗+1

6
𝐾𝑗+1 =

𝑣𝑗+1 − 𝑣𝑗

𝑑𝑗+1
−

𝑣𝑗 − 𝑣𝑗−1

𝑑𝑗
                                    (17)   

                     (𝑗 = 1,2, … , 𝑚 − 1) 

 

For equal intervals, we have 𝑑𝑗 =  𝑑𝑗+1 =  𝑑 and Equation (17) simplifies to  

                              𝐾𝑗+1 + 4𝐾𝑗 + 𝐾𝑗+1 =
6

𝑑2 (𝑣𝑗+1 − 2𝑣𝑗 + 𝑣𝑗−1)                                                 (18) 

                                           ( 𝑖 = 1,2, … , 𝑚 − 1) 

The system of the above equation has some special significance. If 𝐾0 and 𝐾𝑚  ae known, then 

the system can be written as 

2(𝑑1 + 𝑑2)𝐾1 + 𝑑2𝐾2 = 6 (
𝑣2 − 𝑣1

𝑑2
−

𝑣1 − 𝑣0

𝑑1
) − 𝑑1𝐾0 

𝑑2𝐾1 + 2(𝑑2 + 𝑑3)𝐾2 + 𝑑3𝑀3 = 6 (
𝑣3 − 𝑣2

𝑑3
−

𝑣2 − 𝑣1

𝑑2
)  

𝑑3𝐾2 + 2(𝑑3 + 𝑑4)𝐾3 + 𝑑4𝐾4 = 6 (
𝑣4 − 𝑣3

ℎ4
−

𝑣3 − 𝑣2

𝑑3
) 



                                           : 

𝑑𝑚−1𝐾𝑚−2 + 2(𝑑𝑚−1 + 𝑑𝑚)𝐾𝑚−1

= 6 (
𝑣𝑚 − 𝑣𝑚−1

𝑑𝑚
−

𝑣𝑚−1 − 𝑣𝑚−2

𝑑𝑚−1
) − 𝑑𝑚𝐾𝑚                                      (19) 

Equations (17) or (18) constitute a system of (m - 1) equations and with the two conditions in 

(iv) for the natural spline, we have a complete system which can be solved for the 𝐾𝑗. Systems 

of the above form (19) are called tridiagonal systems. When the 𝐾𝑗 are known, equation (13)  

then gives the required cubic spline in the subinterval [𝑢𝑗−1, 𝑢𝑗]. Also, the 𝑣𝑗
′ can be obtained 

from equations (14) and (16). 

 

4.3.1 MINIMIZING PROPERTY OF CUBIC SPLINES 

 

We prove this property for the natural cubic spline. Let 𝑠(𝑢) be the natural cubic spline 

interpolating the set of data points (𝑢𝑗 , 𝑣𝑗), 𝑗 = 0,1,2, … , 𝑚 where it is assumed that 𝑎 = 𝑢0 <

𝑢1 < 𝑢2 < ⋯ < 𝑢𝑛 = 𝑏. Since s(u) is the natural cubic spline, we have 𝑠(𝑢𝑗)for all j and also 

𝑠"(𝑢0) =  𝑠"(𝑢𝑚) = 0 .  

Let 𝑤(𝑢)be a function such that 𝑤(𝑢𝑗) = 𝑣𝑗  for all j, and 𝑤(𝑢), 𝑤′(𝑢), 𝑤"(𝑢) are continuous in 

[a, b] Then the integral defined by 

                                                          𝐼 = ∫ [𝑤"(𝑢)]
𝑏

𝑎
2du 

will be minimum if and only if 𝑤(𝑢) = 𝑠(𝑢). This means that s(u) is the smoothest function  

interpolating to the set of data points defined above, since the second derivative is a good 

approximation to the curvature of a curve, We write 

                          ∫  
𝑏

𝑎
[𝑤"(𝑢)]2𝑑𝑢 = ∫ [𝑠"(𝑢)

𝑏

𝑎
+w”(u)-s”(u)]2du  

       = ∫  
𝑏

𝑎

[𝑠"(𝑢)²𝑑𝑢 + 2 ∫  
𝑏

𝑎

 𝑠"(𝑢)[𝑤(u)-s"(u)]du 

                                                          + ∫  
𝑏

𝑎
[w”(𝑢) − 𝑠”(𝑢)]²𝑑𝑢                                                            (20) 

 

Now,              ∫  
𝑏

𝑎
 𝑠"(u)[w"(u)-s"(u)]du= ∑  ∫  

𝑢𝑗+1

𝑢𝑗
s(𝑢)[𝑤(u)-s(𝑢)]𝑑𝑢 

= ∑ {𝑠"(𝑢)[𝑤′(𝑢) − 𝑠′(𝑢)]} 

                                                         −∑ ∫  
𝑢𝑗+1

𝑢𝑗
 𝑠′′′(𝑢)[𝑤′(𝑢)  − 𝑠′(𝑢)]𝑑𝑢                                      (21) 



 

The first term in above equation simplifies to 

𝑠"(um)[w'(um)-s'(um)]-s"(𝑢0)[𝑤′(𝑢0) − 𝑠′(𝑢0)] 

 

Since 𝑠"(𝑢𝑛) =  𝑠"(𝑢0) = 0, the above expression vanishes. Similarly, the second term in (21) is 

zero since s'''(u)  has a constant value in each interval and 𝑠(𝑢𝑗) =  𝑤(𝑢𝑗) =  𝑣𝑗 for all j. Hence, 

(20) becomes 

∫  
𝑏

𝑎

[𝑤"(u)]²du= ∫  
𝑏

𝑎

[s"(𝑢)]

2

𝑑𝑢 + ∫  
𝑏

𝑎

[𝑤"(u)- s"(𝑢)]²𝑑𝑢        (22)  

or 

∫  
𝑏

𝑎

[𝑤"(u)]²du≥ ∫  
𝑏

𝑎

[s"(𝑢)]²𝑑𝑢 

 

It follows that the integral 

𝐼 = ∫  
𝑏

𝑎

[𝑤"(𝑢)]²𝑑𝑢 

will be minimum if and only if 

                                                 ∫  
𝑏

𝑎

 [𝑤"(u)- s"(𝑢)]2𝑑𝑢 = 0                                                                 (23) 

 

which means that 𝑤"(u)= s"(𝑢). Hence 𝑤(𝑢) − 𝑠(𝑢) is a polynomial in u of degree at most 

three in [a, b]. But the difference 𝑤(𝑢) −  𝑠(𝑢) vanishes at the points j= 0,1,2,...,m. It therefore 

follows that 

𝑤(𝑢) = 𝑠(𝑢),          𝑎 ≤ 𝑢 ≤ 𝑏 

 

4.3.2. ERROR IN THE CUBIC SPLINE AND ITS DERIVATIVES 

 

An estimation of error in the cubic spline and its derivatives is important for assessing the 

accuracy and reliability of the interpolating function. One way to estimate the error in the cubic 

spline is to use the error bounds derived from the theory of approximation. 



The following theorem provides an estimate of the error in the natural cubic spline: 

 

Theorem : 

  If 𝑣 𝑐2[𝑎, 𝑏], 𝑎 = 𝑢0 < 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑚 = 𝑏 and if 𝑠(𝑢) is the natural cubic spline for 

which 

𝑠(𝑢𝑗) = 𝑣𝑗 ,           𝑖 = 0,1,2, … , 𝑚 

Then  

                                                 max|𝑣(𝑢) − 𝑠(𝑢)| ≤
1

2
𝐾𝑑2                                                               (24) 

Where 

𝑑 =  𝑢𝑗+1 − 𝑢𝑗 ,          𝑗 = 0,1,2, … , 𝑚 

And 

𝑀 = max|𝑣"(𝑢)|,          𝑢0 ≤ 𝑢 ≤ 𝑢𝑚 

 

As the interval length d becomes smaller, the natural cubic spline interpolant provides a better 

approximation to the underlying function. This is because the cubic spline interpolant is 

designed to be smooth and continuous, which makes it a more accurate representation of a 

smooth function than other interpolation methods like Lagrange interpolation, which can 

exhibit oscillations and overshoots between data points. 

To estimate the error in the first derivatives, we use the recurrence relation, 

𝑘𝑗−1 + 4𝑘𝑗 + 𝑘𝑗+1 =
3

𝑑
(𝑣𝑗+1 − 𝑣𝑗−1) 

That is, 

                                           𝑠′(𝑢𝑗−1) + 4𝑠′(𝑢𝑗) + 𝑠′(𝑢𝑗+1) =
3

𝑑
(𝑣𝑗+1 − 𝑣𝑗−1) 

This equation can rewrite by using the operator notation, 

                                    (E-1+4+E) 𝑠′(𝑢𝑗) =
3

ℎ
(𝐸 −E-1)𝑣𝑗                                                                        

 

Since E=edD , where D= d/du, the above equation becomes 

(e-dD+4+ edD ) 𝑠′(𝑢𝑗) =
3

𝑑
(edD - e-dD )𝑣𝑗                                                                                                (25) 



now 

edD = 1 + 𝑑𝐷 +
𝑑2𝐷2

2!
+

𝑑3𝐷3

3!
+

𝑑4𝐷4

4!
+

𝑑5𝐷5

5!
+ ⋯  

and  

 e-dD  =1 − 𝑑𝐷 +
𝑑2𝐷2

2!
−

𝑑3𝐷3

3!
+

𝑑4𝐷4

4!
−

𝑑5𝐷5

5!
+ ⋯ 

hence  

edD + e-dD  = 2 (1 +
𝑑2𝐷2

2
+

𝑑4𝐷4

24
+

𝑑6𝐷6

720
+ ⋯ )        

and 

edD - e-dD = 2 (𝑑𝐷 +
𝑑3𝐷3

6
+

𝑑5𝐷5

120
+ ⋯ ) 

using the above expression (25), we get 

   [2 (1 +
𝑑2𝐷2

2
+

𝑑4𝐷4

24
+ ⋯ ) + 4] 𝑠′(𝑢𝑗) =

3

𝑑
× 2 (𝑑𝐷 +

𝑑3𝐷3

6
+

𝑑5𝐷5

120
+ ⋯ ) 𝑣𝑗    

                                                                                           = 6 (𝐷 +
𝑑2𝐷3

6
+

𝑑4𝐷5

120
+ ⋯ ) 𝑣𝑗                           

This implies 

𝑠′(𝑢𝑗) =
6 (𝐷 +

𝑑2𝐷3

6 +
𝑑4𝐷5

120 + ⋯ )

6 + 𝑑2𝐷2 +
𝑑4𝐷4

12 + ⋯
𝑣𝑗 

=
𝐷 +

𝑑2𝐷3

6 +
𝑑4𝐷5

120 + ⋯

1 +
𝑑2𝐷2

6 +
𝑑4𝐷4

72 + ⋯
𝑣𝑗 

= (𝐷 +
𝑑2𝐷3

6
+

𝑑4𝐷5

120
+ ⋯ )   [1 + (

𝑑2𝐷2

6
+

𝑑4𝐷4

72
+ ⋯ )]-1 𝑣𝑗

 

= (𝐷 +
𝑑2𝐷3

6
+

𝑑4𝐷5

120
+ ⋯ ) [1 − (

𝑑2𝐷2

6
+

𝑑4𝐷4

72
+ ⋯ ) + (

𝑑2𝐷2

6
+

𝑑4𝐷4

72
+ ⋯ )

2

− … ] 𝑣𝑗
 

= (𝐷 +
𝑑2𝐷3

6
+

𝑑4𝐷5

120
+ ⋯ ) (1 −

𝑑2𝐷2

6
−

𝑑4𝐷4

72
− ⋯ +

𝑑4𝐷4

36
+ ⋯ ) 𝑣𝑗

 

= (𝐷 +
𝑑2𝐷3

6
+

𝑑4𝐷5

120
+ ⋯ ) (1 −

𝑑2𝐷2

6
+

𝑑4𝐷4

72
− ⋯ ) 𝑣𝑗

 



= (𝐷 −
𝑑2𝐷3

6
+

𝑑4𝐷5

72
− ⋯ +

𝑑2𝐷3

6
−

𝑑4𝐷5

36
+ 

𝑑4𝐷5

120
+. … ) 𝑣𝑗          

= (𝐷 −
1

180
𝑑4𝐷5 + ⋯ ) 𝑣𝑗

 

Hence 

                                 𝑠′(𝑢𝑗) = 𝑣𝑗
′ −

1

180
𝑑4𝑣𝑗

(5)𝑂(𝑑6)                                                               (26) 

Similarly we can derive the equation: 

𝑠"(uj)= v"(𝑢𝑗) −
1

12
𝑑2𝑣(4)(𝑢𝑗) +

1

360
𝑑4𝑣(6)(𝑢𝑗) + 𝑂(𝑑6) 

 

1

2
[𝑠′′′(𝑢𝑗 +) + 𝑠′′′(𝑢𝑗 −)] =  𝑣′′′(𝑢𝑗) +

1

12
𝑑2𝑣(5)(𝑢𝑗) + 𝑂(𝑑4) 

 

𝑠′′′(𝑢𝑗 +) − 𝑠′′′(𝑢𝑗 −) =  𝑑𝑣(4)(𝑣𝑗) −
1

720
𝑑5𝑣(8)(𝑢𝑗) + 𝑂(𝑑7)                           (27) 

 

From the equations (26) and (27), we get  

𝑣′(𝑢𝑗) =  𝑠′(𝑢𝑗) + 𝑂(𝑑4) 

𝑣"(uj)= s"(𝑢𝑗) +
1

12
𝑑2𝑣(4)(𝑢𝑗) + 𝑂(𝑑4) 

𝑣′′′(𝑢𝑗) =
1

2
[𝑠′′′(𝑢𝑗 +) + 𝑠′′′(𝑢𝑗 −)] + 𝑂(𝑑2) 

𝑣(4)(𝑢𝑗) =
1

2
[𝑠′′′(𝑢𝑗+) − 𝑠′′′(𝑢𝑗−)] + 𝑂(𝑑4) 

 

The above relations demonstrate that 𝑣′′′(𝑢𝑗) is approximately less accurate than 

𝑣′(𝑢𝑗), 𝑣′′(𝑢𝑗)𝑎𝑛𝑑 𝑣(4)(𝑢𝑖). 

 

 

 

 

 



 

 

 

 

 

                CONCLUSION 

it will examine the original pixel and then create a function that will describe the new pixel to create 

a new data set. Interpolation is a statistical method where unknown values are found using a known 

set of values. 

There are different types of interpolation such as linear interpolation,spline interpolation,cubic 

interpolation etc. 

There are many applications of interpolation ,some of which are : 

 1.Spline interpolation is often used in numerical analysis and computer graphics to represent 

curves and surfaces. It has several advantages over other interpolation methods, such as 

polynomial interpolation, including reduced oscillations, improved accuracy, and better 

preservation of derivatives. 

2.Scientists may need to use a computer to do complicated calculations and it may take very long 

time. In such cases,they can use interpolation to convert their calculation to a slightly less 

complicated version. This will take less time and energy. 

3.When an image is made larger,new pixels must be created instead of the existing pixels which 

cannot be stretched.  Interpolation is used in the software that enlarges these pixels. First of all, the 

software spreads out the existing pixels, leaving many gaps and spaces,into a new image size. Then 

 



 

 

 

 

  

                REFERENCES    

 
 • S.S. Sastry: Introductory methods of numerical analysis (fourth edition). 

 • S.S. Sastry: Introductory methods of numerical analysis (fifth edition).  

• Anthony Ralston, Philip Rabinowitz: A first course in numerical analysis (second edition). 

 • Dr. P. Kandasamy, Dr. K. Thilagavathy, Dr. K. Gunavathi: Numerical methods. 


	c)  The Pth Central Difference
	2.2 ITERATED INTERPOLATION

	2.3 INVERSE INTERPOLATION
	2.4  HERMITE INTERPOLATION
	2.5   CENTRAL DIFFERENCE FOR INTERPOLATION FORMULA
	2.5.1   GAUSSES CENTRAL DIFFERENCE FORMULA

	Lets take the average of the gauss’s  backward and forward fmulae ,we get ;
	2.5.3   BESSEL’S FORMULA
	For practicals interpolation this is commonly used . It use the differences showed in below table .In  the bracket  the mean value has token .
	2.5.4  EVERETT FORMULA
	2.5.5 Relation between Basseles and Everetts formulae


