
A Study on Fuzzy Decision Making 

 

 

 
Page 1 

 

  

A STUDY ON FUZZY DECISION MAKING 

 

DISSERTATION SUBMITTED TO MAHATMA GANDHI UNIVERSITY, 

            KOTTAYAM 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE 

DEGREE OF 

 

BACHELOR OF SCIENCE IN MATHEMATICS 
 

 
 

JOINED BY 

 

ALEX SHAJU                   190021035808 

JISMI JOSE  190021035828 

MELITTA JOHNSON                       190021035832 

NIKHIL PAUL         190021035814 

SIONA SABU                          190021035819 

VIJISHIYA VIJAYAN                       190021035820 

 

UNDER THE GUIDANCE OF 

                                                         Ms. Nathasha Baby 

DEPARTMENT OF MATHEMATICS 

BHARATA MATA COLLEGE  

THRIKKAKARA 

2019-2022 



A Study on Fuzzy Decision Making 

 

 

 
Page 2 

 

  

 

 

 

DECLARATION 

                                  

   We hereby declare that this project entitled “A STUDY ON FUZZY DECISION 

MAKING” is a bonafide record of work done by us under the supervision of Ms. NATHASHA 

BABY, Guest Lecturer, Department of Mathematics, Bharata Mata College, Thrikkakara and the 

work has not previously formed by the basis for the award of any academic qualification, fellowship 

or other similar title of any other University or Board. 

     
 

 

ALEX SHAJU 

JISMI JOSE 

MELITTA JOHNSON                       

NIKHIL PAUL 

SIONA SABU 

VIJISHIYA VIJAYAN 

 

 

 

Place: 

Date:  

 



A Study on Fuzzy Decision Making 

 

 

 
Page 3 

 

  

 
 

 

CERTIFICATE 

 
 

 

This is to certify that the project entitled "A STUDY ON FUZZY DECISION MAKING" 

submitted jointly by Alex Shaju, Jismi Jose, Melitta Johnson, Nikhil Paul, Siona Sabu and Vijishiya 

Vijayan in partial fulfillment of the requirements for the B.Sc. Degree in Mathematics is a bonafide 

record of the studies undertaken by them under my supervision at the Department of Mathematics, 

Bharata Mata College, Thrikkakara, during 2021 – 2022. This dissertation has not been submitted 

for any other degree elsewhere. 

 

 

                                                                                                         Ms. Nathasha Baby 
                                                                                                                                                             

Supervisor 

 

 

 

 

 

 

Place: 

Date:  



A Study on Fuzzy Decision Making 

 

 

 
Page 4 

 

  

 

 

ACKNOWLEDGEMENT 

 

      We have immense pleasure in presenting this dissertation on “A STUDY ON FUZZY DECISION 

MAKING”. We would like to express our sincere gratitude towards Ms. NATHASHA BABY, Guest 

Lecturer in the Department of Mathematics of Bharata Mata College, Thrikkakara for her valuable support 

and guidance that enabled us to make study in this topic and to prepare this dissertation.  

We are also thankful to Dr. Seethu Varghese, Head of the Department of Mathematics, for her valuable 

advices. We are obliged to all other teachers in the department for their cooperation to prepare this project. 

 

ALEX SHAJU 

JISMI JOSE 

MELITTA JOHNSON                       

NIKHIL PAUL 

SIONA SABU 

VIJISHIYA VIJAYAN 

 

 

 

Place: 

Date:  



A Study on Fuzzy Decision Making 

 

 

 
Page 5 

 

  

 

 

CONTENTS 

 

         Page no. 

 

1.  Chapter 1: Introduction……………………………………… 06 

2. Chapter 2: Individual and Multiperson Decision Making……   09 

3.    Chapter 3: Multicriteria and Multistage Decision Making …. 17 

4.  Chapter 4: Fuzzy Linear Programming ………………….…. 26  

5.  Conclusion ………………………………………………..… 31 

6. References ……………………………………….…….…… 32  

 

 

 

 



A Study on Fuzzy Decision Making 

 

 

 
Page 6 

 

  

 

CHAPTER 1 

INTRODUCTION 

 

 

                                              A fuzzy set is a class of objects with a continuum of grades of 

membership, such a set is characterized by a membership function which assigns to each object a 

grade of membership ranging between 0 and 1.The notions of inclusion, union, intersection, 

complements, relation, convexity, etc. are extended to such sets and various properties of these 

notions in the context of fuzzy sets are established. In particular, a separation theorem for convex 

fuzzy sets is proved without requiring that the fuzzy sets be disjoint. 

              Fuzzy sets allow us to represent vague concept in natural language. The fuzziness of a 

property lies in the lack of well-defined boundary of the set of objects to which this property 

applies.  

More specifically consider a subset A, which is the set of all tall men in the universal set X that is 

the set of all men having the property of being tall. This fuzzy subset obviously has no well-defined 

boundary. Usually there are members of A, who are definitely tall, others who are not tall at all 

but there exist also border line cases. Then a membership of degree 1 is assigned to the objects 

that completely belong to A – here the men who are definitely tall. Conversely, the degree 0 is 

assigned to the objects that do not belong to A at all. Furthermore the membership degrees of 

borderline cases will naturally lie between 0 and 1. In other words the more element or object is 

characteristic A, its degree of membership is closer to 1. Therefore a fuzzy set is a set which has 

no sharp boundaries. 

               Making decisions is undoubtedly one of the most fundamental activities of human beings. 

We all are faced in our daily life with varieties of alternative actions available and we decide which 

of the available action to take. Initially, decision making has evolved into a respectable and rich 

field of study. The current literature on decision making, based largely on theories and methods 

developed in 18th century, is enormous.  

                The subject of decision making is the study of how decisions are actually made and how 

they can be made better or more successfully. The decision making process is of key importance 

for the functions such as inventory control, investment, personal actions etc.  

                  Applications of fuzzy sets within the field of decision making consist of fuzzification 

of the classical theories of decision making. While decision making under conditions of risk have 

been modeled by probabilistic decision theories and game theories, fuzzy decision theories attempt 

to deal with the vagueness and non-specificity inherent in human formulation of preferences, 

constraints, and goals.  
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                   A decision is said to be made under conditions of certainty when the outcome for each 

action can be determined and ordered precisely. In this case, the alternative that leads to the 

outcome yielding the highest utility is chosen. The decision making problem becomes an 

optimization problem of maximizing the expected utility. When probabilities of the outcome are 

not known, or may not even be relevant, and outcomes for each action are characterized only 

approximately, we say that decisions are made under uncertainty. This is the prime domain for 

fuzzy decision making. 

                   Several classes of decision making problems are usually recognized. According to one 

criterion, decision problems are classified as those involving a single decision maker and those 

which involve several decision makers. These problem classes are referred to as individual 

decision making and multi-person decision making, respectively. 

 

PRELIMINARIES 

 

 Classical set /Crisp set (A) 

A set with fixed and well defined boundary.  

Eg: A set of technical universities having at least five departments each. 

 

 Universe set / Universe of Discourse (X)  

A set consisting of all possible elements. 

Eg: All technical universities in the world. 

 

 Characteristic function  

   A set A subset of X defined by a function, usually called a Characteristic function, that declares 

with each element of x are members of the set and which are not. Set A is defined by its 

characteristic function µA; as follows: 

                   µA (x) =   {
1  ;   𝑖𝑓 𝑥 ∈ A
0   ;   𝑖𝑓 𝑥 ∉ 𝐴

                                 

That is,     µA: X → {0, 1} 
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 Membership Function  

            A characteristic function of crisp set assigns a value of either 1 or 0 each individual in the 

universal set, thereby discriminating between members and nonmembers of the crisp set under 

consideration.  

                The most commonly used range of values of membership functions is the unit interval 

[0, 1]. In this case ,each membership function maps elements of a given universal set X, which is 

always a crisp set, into real numbers in [0,1]. 

 Fuzzy set  

 The values assigned to the elements of the universal set fall within a specified range and indicate 

the membership grade of these elements in the set. Larger values denote higher degrees of set 

membership, such a function is called a membership function and the set defined by it is a fuzzy 

set.  

A fuzzy set kept in A is a function from universal set to [0, 1]. 

That is, A: X→ [0, 1] 

For example: 1) Let X=N set of all natural numbers, define a fuzzy set A kept in N as, A (n) = 1/n 

∀ n ∈ ℕ   

That is, A(1)=1 , A(2)=1/2 , A(3)=1/3 , etc. 

 

2) Let X = R the set of all real numbers: Then a fuzzy set A kept in R is  

                    A (µ) = {
0  ;   𝑖𝑓 µ ∈ Q
1  ;   𝑖𝑓 µ ∉ 𝑄
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CHAPTER 2 

INDIVIDUAL AND MULTIPERSON 

 DECISION MAKING 

 

 

Ⅰ. INDIVIDUAL DECISION MAKING 

  

Fuzziness can be introduced into the existing models of decision models in various ways. In the 

first paper on fuzzy decision making Bellman and Zadeh [1970] suggest a fuzzy model of decision 

making in which relevant goals and constraints are expressed in terms of fuzzy sets, and a decision 

is determined by an appropriate aggregation of these fuzzy sets. A decision situation in this model 

is characterized by the following components: 

• a set A of possible actions; 

• a set of goals G i (i ∈ ℕn), each of which is expressed in terms of a fuzzy set defined on A; 

• a set of constraints C j (j ∈ ℕm) each of which is also expressed by a fuzzy set defined on A. 

It is common that the fuzzy sets expressing goals and constraints in this formulation are not defined 

directly on the set of actions, but indirectly, through other sets that characterize relevant states of 

nature. Let G'i and C'j be fuzzy sets defined on sets Xi and Yj respectively, where i ∈ ℕn and j ∈ 

ℕm. Assume that these fuzzy sets represent goals and constraints expressed by the decision maker. 

Then, for each i ∈ ℕn and j ∈ ℕm, we describe the meaning of actions in set A in terms of sets Xi 

and Yj by functions 

gi : A → Xi 

cj : A → Yj 

and express goals Gi and constraints Cj by the compositions of gi with G'i and the composition of 

cj and C’j; that is, 

Gi (a) = G'i (gi (a)),        (2.1) 

Cj (a) = C'j (cj (a))        (2.2) 

for each a ∈ A. 
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Given a decision situation characterized by fuzzy sets A, Gi (i ∈ ℕn), and Cj (j ∈ ℕm), a 

fuzzy decision, D, is conceived as a fuzzy set on A that simultaneously satisfies the given goals  

D (a) = min [ inf
i ∈ ℕn

𝐺𝑖(𝑎) , inf
j ∈ ℕm

𝐶𝑗(𝑎) ]      (2.3) 

  

F or all a ∈ A, provided that the standard operator of fuzzy intersection is employed. 

  

Once a fuzzy decision has been arrived at, it may be necessary to choose the "best" single crisp 

alternative from this fuzzy set. This may be accomplished in a straightforward manner by choosing 

an alternative â ∈ A that attains the maximum membership grade in D. Since this method ignores 

information concerning any of the other alternatives, it may not be desirable in all situations. When 

A is defined on ℝ, it is preferable to determine â by an appropriate defuzzification method. 

Example: 

Suppose that an individual need to decide which of four possible jobs, a₁, a2, a3, a4, to choose. His 

or her goal is to choose a job that offers a high salary under the constraints that the job is interesting 

and within close driving distance. In this case A = {a1, a2, a3, a4}, and the fuzzy sets involved 

represent the concepts of high salary under, interesting job, and closed driving distance. These 

concepts are highly subjective and context-dependent, and must be defined by the individual in a 

given context. The goal is expressed in monetary terms, independent of the jobs available. Hence, 

according to our notation, we denote the fuzzy set expressing the goal by G' is given in Fig. 2.1, 

where we assume, for convenience, that the underlying universal set is ℝ+. To express the goal in 

terms of set A, we need a function g: A → ℝ+, which assigns to each job the respective salary. 

Assume the following assignments: 

g (a1) = $40,000, 

g (a2) = $45,000, 

g (a3) = $50,000,  

g (a4) = $60,000. 
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Fig 2.1 Fuzzy goal and constraint: (a) goal G': high salary; (b) constraint C'2: close driving distance 

 

Composing now function g and G', we obtain the fuzzy set 

G = .11 /a1 + .3 /a2 + .48 /a3 + .8 /a4 

which expresses the goal in terms of the available jobs in set A. 

The first constraint, requiring that the job be interesting, is expressed directly in terms of 

set A. Assume that the individual assigns to the four jobs in A the following membership grades 

in the fuzzy set of interesting jobs: 

C1 = .4/a1 + .6/a2 + .2/a3 + .2/a4. 
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The second constraint, requiring that the driving distance be close, is expressed in terms of the 

driving distance from home to work. Following our notation, we denote the fuzzy set expressing 

this constraint by C'2. A possible definition of C'2 is given in Fig. 2.1, where distances of the four 

jobs are also shown. Specifically, 

c₂ (a1) = 27 miles,  

c₂ (a₂) = 7.5 miles,  

c2 (a3) = 12 miles,  

c₂ (a4) = 2.5 miles. 

By composing functions c2 and C'2, we obtain the fuzzy set 

C2 = .1/a1 + .9/a2 + .7/a3 + 1/a4, 

which expresses the constraint in terms of the set A. 

  

Applying now formula (2.3), we obtain the fuzzy set 

   D = .1/a1 + .3/a2 + .2/a3 + .2/a4. 

 which represents a fuzzy characterization of the concept of desirable job. The job to be chosen is  

â = a2; this is the most desirable job among the four available jobs under the given goal G and 

constraints C1, C2 as expressed by (2.3). 
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Ⅱ. MULTI PERSON DECISION MAKING 

 

When decision made by more than one person are modeled, two differences from the case 

of single decision maker can be considered: first, the goal of the individual decision makers may 

differ such that each places a different ordering on the alternatives; second, the individual decision 

makers may have access to different information upon which to base their decision. Theories 

known as n-person game theories deal with both of these considerations, team theories of decision 

making deal only with the second, and group decision theories deal only with the first. 

        A fuzzy model group decision was proposed by Blin [1974] and Blin and Whinston [1973]. 

Here each member of a group of n individual decision makers is assumed to have a reflexive, 

antisymmetric and transitive preference ordering Pk, k ∈ ℕn, which totally or partially orders a set 

X of alternatives. A “social choice” function must then be found which, given the individual 

preference orderings, produces the most acceptable overall group preference ordering. Basically, 

this model allows for the individual decision makers to possess different aims and values while 

still assuming that the overall purpose is to reach a common, acceptable decision. In order to deal 

with the multiplicity of opinion evidenced in the group, the social preference S may be defined as 

a fuzzy binary relation with membership grade function 

                       S: X × X →  [0, 1], 

 which assigns the membership grade S (xi, xj), indicating the degree of group preference of 

alternative xi over xj. The expression of this group preference requires some appropriate means of 

aggregating the individual preferences. One simple method computes the relative popularity of 

alternatives xi over xj by dividing the number of persons preferring xi to xj, denoted by N (xi, xj), 

by the total number of decision makers, n. This scheme corresponds to the simple majority vote. 

Thus,  

                                     S (xi, xj) =
𝑁 (𝑋𝑖.  𝑋𝑗)

𝑛
.        (2.4) 

 

       Other method of aggregating the individual preference may be to accommodate different 

degree of influence exercised by the individuals in the group. For instance, a dictatorial situation 

can be modeled by the group preference relation S for which 

 

S (xi, xj) = {1 𝑖𝑓 𝑥𝑖 >
𝑘 𝑥𝑗  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑘 

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

                                                                                                                                                                                                            

where >
𝑘 represents the preference ordering of the one individual k who exercises complete 

control over the group decision.  
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Once the fuzzy relationship S has been defined, the final non-fuzzy group preference can 

be determined by converting S into its resolution form  

S =  ⋃𝛼 ∈ [0,1]  α
αS 

which is the union of the crisp relations αS comprising of the α-cuts of the fuzzy relation S, each 

scaled by α. Each value α essentially represented the level of agreement between the individuals 

concerning the particular crisp ordering αS. One procedure that maximize the final agreement level 

consist of intersecting the classes of crisp total orderings that are compatible with the pairs in the 

α-cuts αS for increasingly smaller value of α until a single crisp total ordering is achieved. In this 

process, any pair 〈xi, xj〉 that leads to an intransitivity are removed. The largest value α for which 

the unique compatible ordering on X × Y is found represents the maximized agreement level of 

the group and the crisp ordering itself represents the group decision. 

Pairwise comparisons 

         In this method, f (xi, xj), denotes the attractiveness grade given by the individual to xi with 

respect to xj. These primitive evaluations, which are expressed by positive numbers in a given 

range, are made by the individual for all pairs of alternatives in the given set X. They are then 

converted to relative preference grades, F (xi, xj), by the formula.   

  F (xi, xj) = 
𝑓 (𝑥𝑖,   𝑥𝑗)

max [ 𝑓 (𝑥𝑖,   𝑥𝑗),   𝑓 (𝑥𝑗,   𝑥𝑖)
 

     = min [1, 𝑓 (𝑥𝑖,   𝑥𝑗) /  𝑓 (𝑥𝑗,   𝑥𝑖) ] 

for each pair (xi, xj) ∈ X2. Clearly, F (xi, xj) ∈ [0, 1] for all pairs (xi, xj) ∈ X2.  

When F (xi, xj) = 1, xi is considered at least as attractive as xj. Function F, which may be viewed 

as a membership function of a fuzzy relation on X, has for each pair (xi, xj) ∈ X2 the property  

max [F (xi, xj). F (xj, xi)] = 1. 

 The property means: for each pair of alternatives, at least one must be as attractive as the other.  

For each xi ∈ X, we can now calculate the overall relative preference grades, p (xi), of xi with respect 

to all other alternatives in X by the formula 

  p (xi) = min
𝑥𝑗 ∈ 𝑋

F (xi, xj), 

The preference ordering of alternatives in X is then induced by the numerical ordering of these 

grades p (xi). 

  

Example 1 

Consider a group of people involved in a business partnership who intend to buy a common car 

for business purposes. To decide what car to buy is a multi-person decision problem. Assume, for 

the sake of simplicity that only five car models are considered. Acclaim, Accord, Camry, Cutlass 
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and Sable. Assume further that, using the numbers suggested in table (a) for specifying the 

attractiveness grades the evaluation prepared by one person in the group is given in table (b) the 

corresponding relative preference grades and the overall relatives preference grade are given 

in(c).The latter induce the following preference ordering of the models: Camry, Sable, Accord, 

Cutlass and Acclaim. Orderings expressing preferences by the other members of the group can be 

determined in the similar way. Then the method for multi person decision making describe in the 

section can be applied to these preference orderings to obtain a group decision. 

(a) Suggested numbers for attractiveness grading.  

 

  

  

(b) Given attractiveness grades 

 

 
 

(c) Relative preference grade and overall relative preference grades 

 

 
 

In this example F (xi, xj) denotes the attractiveness grades given by the individual to x with respect 

to xj. These primitive evaluations which are expressed by the positive numbers in a given range 

are made by the individual for all pair of alternatives in the given set X they are the converted to 

relative preference grades F (xi, xj) by the formula  
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    F (xi, xj) = 
𝑓 (𝑥𝑖,   𝑥𝑗)

max [ 𝑓 (𝑥𝑖,   𝑥𝑗),   𝑓 (𝑥𝑗,   𝑥𝑖)
 

         = min [1, 𝑓 (𝑥𝑖,   𝑥𝑗) /  𝑓 (𝑥𝑗,   𝑥𝑖) ] 

 

  for each pair (xi, xj) 

     For each xi ∈ X, we can now calculate the overall relative preference grades, p (xi), of xi with 

respect to all other alternatives in X by the formula  

P (xi) = min F (xi, xj) 

The preference ordering of alternatives in X is then induced by the numerical ordering of these 

grades p (xi). 
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CHAPTER 3 

MULTICRITERIA AND MULTISTAGE  

DECISION MAKING 

 

Ⅰ. MULTICRITERIA DECISION MAKING 

In multicriteria decision problems, relevant alternatives are evaluated according to a 

number of criteria. Each criterion induces a particular ordering of the alternatives, and we need a 

procedure by which to construct one overall preference ordering .There is a visible similarity 

between these decision problems and problems of multiperson decision making. In both cases, 

multiple orderings of relevant alternatives are involved and have to be integrated into one global 

preference ordering .The difference is that the multiple orderings represent either preferences of 

different people or ratings based on different criteria .The number of criteria in multicriteria 

decision making is virtually always assumed to be finite. 

Let X = {x1, x2,..., xn} and C = {c1, c2,…, cm} be, a set of alternatives and a set of criteria 

characterizing a decision situation, respectively. Then the basic information involved in 

multicriteria decision making can be expressed by the matrix.  

                                                   

𝑅 = [

𝑟11 𝑟12 … 𝑟1𝑛
𝑟21 𝑟22 … 𝑟2𝑛
… …
𝑟𝑚1 𝑟𝑚2 … 𝑟𝑚𝑛

] 

 

Assume first that all entries of this matrix are real numbers in [0, 1] and each entry rij expresses 

the degree to which criterion ci is satisfied by alternative xj (i ∈ ℕm, j ∈ ℕn). Then R may be viewed 

as a matrix representation of a fuzzy relation on C × X. 

 

It may happen that, instead of matrix R with entries in [0, 1], an alternative matrix  

R' = [r'ij], whose entries are arbitrary real numbers. R' can be converted to the desired matrix R by 

the formula.  

     rij =  

r’ ij − min
𝑗 ∈ ℕn

r’ ij 

max
 j ∈ ℕn

𝑟′𝑖𝑗 − min
j ∈ ℕn

𝑟′𝑖𝑗
 

for all i ∈ ℕm and j ∈ ℕn. 
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The most common approach to multicriteria decision problems is to convert them to single-

criterion decision problems. This is done by finding a global criterion, rj = h (r1j, r2j, …, rmj), that 

for each xj ∈ X is an adequate aggregate of values r1j, r2j, ..., rmj to which the individual criteria 

c1,c2,…, cm are satisfied. 

 

 

Example 

 

Problem of recruiting and selecting personal  

      In this particular problem, the selection of conditions from a given set of individuals say x1, x2, 

…, xn is guided by comparing candidates profiles with a required profile in terms of given criteria 

c1,c2,…, cm. This results in matrix R. 

The entries rij of R expressed for each i ∈ ℕm and j ∈ ℕn, the degree to which candidate xj conforms 

to the required profile in terms of criterion cj. A frequently employed operator is the weighted 

average. 

            rj = 
∑ �̃�i �̃�ij𝑚

𝑖=1

∑ �̃�i 𝑚
𝑖=1

   (j ∈ ℕn) 

Where w1, w2, …., wm are weights that indicates the relative importance of criteria                   c1,c2,…, 

cm. A class of possible weighted aggregations is given by the formula 

                           rj = h (r1j
w1, r2j

w2, …, rmj
wm),                 

where h is an aggregation operator and w1, w2, …., wm are weights. 

A more general situation in which the entries of matrix R are fuzzy number �̃�ij on ℝ+, and    weights 

are specified in terms of fuzzy numbers  �̃�i on [0, 1]. Then, using the operations of fuzzy addition 

and fuzzy multiplication, we can calculate the weighted average �̃�j by the formula 

                          �̃�j = ∑𝑚
𝑖=1 �̃�i �̃�ij 

Since fuzzy numbers are not linearly ordered, a ranking method is needed to order the resulting 

fuzzy numbers �̃�1,  �̃�2, … , �̃�n. 
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Ⅱ. MULTISTAGE DECISION MAKING 

 

Multistage decision making is a sort of dynamic process. A required goal is not achieved by solving 

a single problem, but by solving a sequence of decision – making problems. A decision problem 

conceived in terms of fuzzy dynamic programing is viewed as a decision problem regarding a fizzy 

finite state automaton. One restrictions of the automaton in dynamic programing is that the state –

transition relation is crisp and, hence characterized by the usual state-transition function of 

classical automata. The automaton operates with fuzzy input state and fuzzy internal state, and it 

is thus fuzzy in this sense. Another restriction is that no special output is needed. That is the next 

internal state is also utilized as output and; consequently the two need not be distinguished.  

The automaton, 𝒜, involved in fuzzy dynamic programing is defined by the triple  

𝒜 = 〈 X, Z, f 〉 

where X and Z are respectively, the sets of input states and output states of 𝒜, and 

f: Z × X → Z 

is the state-transition of A, whose meaning is to define, for each discrete time t ( t ∈ ℕ), the next 

internal state, zt+1, of the automaton in terms of its present internal state, zt, and its present input 

state , xt. That is,  

zt+1 = f (zt, xt). 
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(a) Crisp automaton                                 Fig.3.1                            (b) Fuzzified automaton 

A scheme of the described automaton is shown in Fig. 3.1. This type of automata is used 

in classical dynamic programming. For fuzzy dynamic programming they must be fuzzified by 

using the extension principle. A scheme of the fuzzified version is shown in Fig 3.1b, where At, 

Ct denote , respectively, the fuzzy input state and fuzzy internal state at time t, and Ct+1 denote, the 

fuzzy internal state at time t+1. Clearly, At is a fuzzy set on X, while Ct and C t+1 are fuzzy sets on 

Z. 

 

 In this conception of decision making, the desired goal is expressed in terms of a fuzzy set 

CN, where N is the time of termination of the decision process. The value of N, which defines the 

number of stages in the decision process, is assumed to be given. It is also assumed that the input 

of 𝒜 is expressed at each time t by a fuzzy state At and that a particular crisp initial internal state 

z0 is given 

        

Considering fuzzy input states A0, A 1,..., AN-1 as constraints and fuzzy internal state CN as 

fuzzy goal in a fuzzy decision making, we may conceive of a fuzzy decision as a fuzzy set on XN 

defined by  

               D=Ã0 ∩ Ã1∩.....ÃN-1∩ C̃N, 

 

where Ãt is a cylindric extension of At  from X to XN  for each t = 0, 1,..., N-1,  and  C̃ N is the fuzzy 

set on XN that induces CN on Z. That is, for any sequence x0, x1,..., xN-1, viewed as a sequence of 

decisions, the membership grade of D is defined by 
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D (x0, x1,..., xN-1) = min [A0(x0), A1(x1), ...., AN-1(xN-1), CN(zN)], 

 

where zN is uniquely determined  by x0, x1,....,xN-1 , this definition assumes , of course ,that we use 

the standard operator of intersection. The decision problem is to find a sequence x0, x1,...., xN-1 of 

input states such that   

 

D (x̂0, x̂1,...., x̂N-1) =   max
x0,....,xN−1

 D(x0, x1,......, xN-1). 

 

To solve this problem by fuzzy dynamic programming, we need to apply a principle known in 

dynamic programming as the principle of optimality which can be expressed as follows: An 

optimal decision sequence has the property that whatever the initial state and initial decision are, 

the remaining decision must constitute an optimal policy with regard to the state resulting from 

the first decision. 

 

Applying the principle of optimality and substituting for D, we can write 

D (x̂0, x̂1,...., x̂N-1) = max
x0,....,xN−2

{max
xN−1

min [A0(x0), A1(x1),...., AN-1(xN-1), CN(f(zN-1,xN-1))]} 

 

This equation can be rewritten as 

   

D (x̂0, x̂1,..., x̂N-1)   =  max
x0,....,xN−2

{min [A0(x0), A1(x1),..., AN-2(xN-1),  

max
xN−1

min [AN-1(xN-1), CN(f(zN-1,xN-1))]]} 

 

     =  max
x0,....,xN−2

{min [A0(x0), A1(x1),..., AN-2(xN-2), 

max
xN−1

min [AN-1(xN-1), CN(zN)]]} 

 

     =   max
x0,....,xN−2

{min [A0(x0), A1(x1),..., AN-2(xN-2), CN-1(zN-1)]} 

 

where CN-1(zN-1)  =  max
xN−1

min[AN-1(xN-1), CN(zN)]. 
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Repeating this backward iteration, we obtained the set of N recurrence equations  

 

CN-k (zN-K) = max
xN−k

 min [AN-k (xN-k), CN-k+1(zN-k+1)],    

for k=1, 2,...., N, where  

zN-k+1 = f (zN-k,xN+1). 

 

Hence, the optimal sequence x̂0, x̂1,..., x̂N-1 of  decisions can be obtained by successively 

maximizing values xN-k, for k = 1, 2,..., N. This results successively in values x̂N-1,..., x̂1, x̂0. 

 

 

Example: 

 

Let us consider automaton with X = {x₁, x₂}, Z = {z1, z2, z3}, and the state transition function 

expressed by the matrix 

 

[
𝑧1 𝑧2
𝑧3 𝑧1
𝑧1 𝑧3

] 

 

 

whose entries are next internal states or any given present internal and output states. Assume that  

 

N = 2, and the fuzzy goal at t = 2 is 

 

C² = .3/z₂ + 1/z₂ + .8/z3. 

 

Assume further that the fuzzy constraints at input at times t = 0 and t = 1 are 

 

A° = .7/x1 + 1/ x2 

 

A¹ = 1/x1 +.6/ x2 

 

To solve this decision problem, we need to find a sequence x̂0, x̂1 of input states for which the 

maximum, 

  

max
x0̂,x1̂

min [A0(x0), A1(x1), C² (f(z1,z1))], 

 

is obtained. Applying the first backward iteration for t = 1, we obtain 
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C1 (z1) = max {min [A¹ (x₁), C² (f (z1, x1))], min [A¹ (x₂), C² (f (z1, x2))]} 

 

= max {min [A¹ (x1), C² (z₂)], min [A¹ (x₂), C² (z₂)]} 

 

= max {min [1, .3], min [.6, 1)} 

 

= .6 

 

C1 (z₂) = max {min [A¹ (x), C2 (f (z2, x1))], min [A' (x₂), C2 (f (z2, x2))]} 

 

= max {min [A'(x1), C
2 (23)], min [A' (x₂), C² (z1)]} 

 

= max {min [1, .8], min [.6, .3]} 

 

= .8 

 

C1 (z3) = max {min [A¹ (x1), C² (f (z3, x1))], min [A' (x2), C² (f (z3, x2))]} 

 

= max {min [A¹ (x1), C² (z1)], min [A¹ (x2), C² (z3)]} 

 

= max {min [1, .3], min [.6, .8]} 

 

= .6 

 

 

Hence, 

 

C1 = .6/z1 + .8/z2 + .6/z3. 

 

By maximizing the expression 

 

min [A1(x1), C² ( f (z¹,x¹) )], 

 

we find the following best decision x̂1 for each state z¹ ∈ Z at time t = 1: 

 

 

z1 z1 z2 z3 

x̂1 x1 x2 x3 

 

 

Applying now the second backward iteration for t = 0, we obtain  

  

C0 (z1) = max {min [A0 (x1), C
1 (f (z2, x1))], min [A0 (x2), C

1 (f (z1, x2))]} 
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= max {min [A0 (x1), C
1 (z1)], min [A0 (x2), C

1 (z2)]} 

 

= max {min [.7, .6], min [1, .8]} 

 

= .8 

 

C0 (z2) = max {min [A0 (x1), C
1 (f (z2, x1))], min [A0 (x2), C

1 (f (z2, x2))]} 

 

= max {min [A0 (x1), C
1 (z3)], min [A0 (x2), C

1 (z1)]} 

 

= max {min [.7, .6], min [1, .6]} 

 

= .6 

 

C0 (z3) = max {min [A0 (x1), C
1 (f (z3, x1))], min [A0 (x2), C

1 (f (z3, x2))]} 

 

= max {min [A0 (x1), C
1 (z1)], min [A0 (x2), C

1 (z3)]} 

 

= max {min [.7, .6], min [1, .6]} 

 

= .6 

 

 

Hence, 

 

 C0 = .8/z1 + .86/z2 + .6/z3. 

 

 

By maximizing the expression  

 

min [A0 (x0), C
1 (f (z0, x0))],  

 

we find the following best decision x̂0 for each state z0 ∈ Z at time t = 0; 

 

 

z0 z1 z2 z3 

x̂0 x2 x1 or x2 x1 or x2 

 

The maximizing decisions for different initial states z0 are summarized. For example, when the 

initial state is z₁, the maximizing decision is to apply action x2 followed by x1. In this case, the 

goal is satisfied to the degree 

 

C0 (z1) = min [A0 (x2), C
1 (z2)] 

 

= min [A0 (x2), min [A1 (x1), C
2 (z3)]] 
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= min [A0 (x2), A
1 (x1), C

2 (z3)] 

 

= min [1, 1, .8] 

 

= .8 

 

That is, the degree to which the goal is expressed in terms of C0 (z1), where z1 is the initial state. 

When the initial state is z2, we have two maximizing decision; hence, there are two ways 

calculating C0 (z2): 

 

C0 (z2) = min [A0 (x1), A
1 (x2), C

2 (z3)] 

 

= min [.7, .6, .8] 

 

= .6 

 

C0 (z2) = min [A0 (x2), A
1 (x2), C

2 (z2)] 

 

= min [1, .6, 1] 

 

= .6 

 

 

That is, this goal is satisfied to the degree .6 when the initial states is z2, regardless of which of to 

the maximizing decisions is used. 
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CHAPTER 4 

FUZZY LINEAR PROGRAMMING 
 

 

The classical linear programming problem is to find the minimum or maximum values of a linear 

function under constraints represented by linear inequalities or equations. The most typical linear 

programming problem is: 

 

Minimize (or maximize)       c1x1 + c2x2+...+ cnxn 

 

Subject to   a11x1 + a12x2 +...+ a1nxn  ≤ b1 

 

    a21x1 + a22x2 +...+ a2nxn  ≤ b2 

 

………………………………. 

 

am1x1 + am2x2 +...+ amnxn  ≤ bm 

 

    x1, x2,… , xn ≥ 0 

 

The function to be minimized (or maximized) is called an objective function; let us denote it by z. 

The numbers ci (i ∈ ℕn.) are called cost coefficient, and the vector c= 〈c₁, c₂,..., cn〉 is called a cost 

vector. The matrix A = [aij], where i ∈ ℕm, and j ∈ ℕn, is called a constraint matrix, and the vector 

v = 〈b₁, b₂,..., bn〉 is called a right-hand side vector. Using this notation, the formulation of the 

problem can be simplified as 

 

Min z = cx 

 

s.t Ax ≤ b 

 

x ≥ 0,         (4.1) 

 

where x =〈x₁, x₂,..., xn〉T is a vector of variables and s.t. stands for "subject to." The set of vectors 

x that satisfy all given constraints is called a feasible set. 

 

Example:  

 

Let us consider, 

 

Min z = x1-2x2 
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s.t. 3x1 - x2 ≥ 1 

      2x1 + x2 ≤ 6 

      0 ≤ x2 ≤ 2 

      0 ≤ x1 

 

Using fig.4.1 as a guide, we can show graphically how the solution of this linear programming 

problem can be obtained. First, we need to determine the feasible set. Employing an obvious 

geometrical interpretation, the feasible set is obtained in fig. 4.1 by drawing straight lines 

representing the equations x1 = 0, x2= 0, x2= 2, 3x1 - x2 = 1, and 2x1 + x2= 6. These straight lines, 

each of which constraints the whole plane into a half-plane, express the five inequalities in our 

examples. When we take the intersection of the five- half planes, we obtain the shaded area in fig 

4.1, which represents the feasible set. This area is always a convex polygon. 

 

To find the minimum of the objective function z within the feasible set, we can draw a family of 

parallel lines representing the equation x1- 2x2 = p, where p is a parameter, and observe the 

direction in which p decreases. Then, we can imagine a straight line parallel to the others moving 

in that direction until it touches either an edge or a vertex of the convex polygon. At that point, the 

value of parameter p is the minimum value of the objective function z. If the requirements were to 

maximize the objective function, we would move the line in the opposite direction, the direction 

in which p increases. 

 

 
Fig: 4.1 
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In many practical situations, it is not reasonable to require that the constraints or the objective 

function in linear programming problems be specified in precise, crisp terms. In such situations, it 

is desirable to use some type of fuzzy linear programming. The most general type of fuzzy linear 

programming is formulated as follows: 

 

  max ∑𝑛
𝑗=1 CjXj 

 

s.t. ∑𝑛
𝑗=1  AijXj  ≤  Bi  ( i ∈ ℕm)      (4.2) 

 

         Xj ≥ 0 (j ∈ ℕn) 

 

where Aij, Bi, Cj, fuzzy numbers, and Xj, are variables whose states are fuzzy numbers (i ∈ ℕm,  j 

∈ ℕn); the operations of addition and multiplication are operations of fuzzy arithmetic and ≤ 

denotes the ordering of fuzzy numbers. 

 

Case 1. Fuzzy linear programming problems in which only the right-hand-side numbers Bi are 

fuzzy numbers: 

 

Max ∑𝑛
𝑗=1 cjxj 

 

s.t. ∑𝑛
𝑗=1 aijxj  ≤  Bi ( i ∈ ℕm)      (4.3) 

 

         xj ≥ 0 ( j ∈ ℕn) 

 

 

Case 2. Fuzzy linear programming problems in which the right-hand-side numbers Bi and the 

coefficients Aij of the constraint matrix are fuzzy numbers: 

 

max ∑𝑛
𝑗=1 cjxj 

 

s.t. ∑𝑛
𝑗=1 AijXj  ≤  Bi  ( i ∈ ℕm)       (4.4) 

 

         xj ≥ 0  ( j ∈ ℕn) 

 

In general, fuzzy linear programming problems are first converted into equivalent crisp linear or 

nonlinear problems, which are then solved by standard methods. The final results of a fuzzy linear 

programming problem are thus real numbers, which represent a compromise in terms of the fuzzy 

numbers involved. 

 

Let us now discuss fuzzy linear programming problems of type (4.3). In this case, fuzzy numbers 

Bi (i ∈ ℕm) typically have the form 
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Bi (x) = {

1 ;   when x ≤  bi       
𝑏𝑖+𝑝𝑖−𝑥 

𝑝𝑖
;  when bi <  x <  b +  pi  

0 ;   when b +  P ≤  x,

  

 

where x ∈ ℝ. For each vector x =〈x₁, x₂,..., xn〉, we first calculate the degree, Di(x), to which x 

satisfies the ith constraint (i ∈ ℕm) by the formula 

 

Di(x) = Bi  (∑𝑛
𝑗=1  aijxj) 

 

These degrees are fuzzy sets on ℝn, and their intersection ⋂𝑚
𝑖=1 Di, is a fuzzy feasible set. 

 

Next, we determine the fuzzy set of optimal values. This is done by calculating the lower and upper 

bounds of the optimal values first. The lower bound of the optimal values, zl, is obtained by solving 

the standard linear programming problem: 

 

max z  = cx 

    

   s.t. ∑𝑛
𝑗=1  aijxj  ≤  bi  ( i ∈ ℕm)       

 

         xj ≥ 0  ( j ∈ ℕn) ; 

 

    

 

the upper bound of the optimal values, zu, is obtained by a similar linear programming problem in 

which each bi is replaced with bi + pi : 

 

   max z  = cx 

    

   s.t. ∑𝑛
𝑗=1 aijxj  ≤  bi  + pi  ( i ∈ ℕm)       

 

         xj ≥ 0  ( j ∈ ℕn) . 

 

Then, the fuzzy set of optimal values, G, which is a fuzzy subset of ℝ", is defined by, 

 

    

 G(x) = {

1 ;  when zu  ≤  cx 
𝑐𝑥 − 𝑧𝑙

𝑧𝑢−𝑧𝑙
 ;  when zl ≤  cx ≤  zu

0 ;  when cx ≤  zl.   

   

 

Now the problem  (4.3) becomes the following classical optimization problem: 

 

max 𝝀 
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s.t. 𝝀 (zu - zl) - cx  ≤  -zl 

 

      𝝀pi + ∑𝑛
𝑗=1 aijxj  ≤  bi  + pi  ( i ∈ ℕm) 

    

      𝝀, xj ≥ 0 (j ∈ ℕn). 

 

The above problem is actually a problem of finding x ∈ R" such that 

 

[(⋂𝑚
𝑖=1 Di) ⋂ G] (x) 

 

reaches the maximum value; that is, a problem of finding a point which satisfies the constraints 

and goal with the maximum degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A Study on Fuzzy Decision Making 

 

 

 
Page 31 

 

  

 

 

CONCLUSION 

 
Fuzziness can be found in many areas of daily life such as in engineering, in medicine, in 

manufacturing and others. It is frequent, however in all areas in which human judgment 

evolution and decision are important. These are the areas of decision making, reasoning, learning 

etc.  

In this project our aim is to study the applicability of fuzzy set theory to main classes of 

decision making problems. Several classes of decision making problems are there. According to 

one criterion, decision problems are classified as those involving single decision maker and 

which involve several decision makers.  

Fuzzy goals and fuzzy constraints can be defined precisely as fuzzy sets in the space of 

alternatives. A fuzzy decision, then may be viewed as an intersection of the given goals and 

constraints. A maximizing decision is defined as a point in the space of alternatives at which the 

membership function of a fuzzy decision attains its maximum value.  

The use of these concepts is illustrated by examples involving multistage decision 

processes in which the system under control is either deterministic or stochastic. By using 

dynamic programming, the determination of a maximizing decision is reduced to the solution of 

a system of functional equations. A reverse-flow technique is described for the solution of a 

functional equation arising in connection with a decision process in which the termination time is 

defined implicitly by the condition that the process stops when the system under control enters a 

specified set of states in its state space.  

Almost all of these enable us to know how decisions are made and how they made better 

or more successfully.  
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