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INTRODUCTION 
 

 

This project is the study of classification of groups of order less than 

or equal to 15 based on the theorems like Sylow theorem, Cauchy’s 

theorem, Lagrange theorem etc. This is done by classifying groups 

into order of prime p, 2p, p2, p3, pq, p2q. This project aims to achieve 

the classification as simply as possible in a way which can be easily 

incorporated into a first course in abstract algebra. The method 

which is used here can be applied to classifying groups of higher 

orders are the highlights. 
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Chapter 1 
 

PRELIMINARIES 

 

1.BINARY OPERATIONS 

 

A binary operation on a set is a rule that assigns to each ordered pair 

of elements of the set to some element of the set.i.e., a binary 

operation on a set S is a function mapping from SxS into S. 

If * is a binary operation on the set S we say that S is closed under 

the operation *. 

If non empty set S is closed under the operation * , then a * b ∈ S for 

a,b ∈ S. 

 

2.GROUPS 

 

A group (G,*) is a set G , closed under a binary operation * , such that 

the following axioms are satisfied. 

Associativity 

The binary operation * is associative. 

i.e.( a * b) * c = a*( b*c) for every a , b , c ∈ G. 
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Existence of identity 

There is an element in G such that e * a = a*e = a  for every a ∈ G. 

Existence of inverse 

For each a ∈ G, there is an element a-1 in G such that 

 a-1 * a = a * a-1 = e 

 

3.ABELIAN GROUP 

 

A group (G , *) is said to be abelian or commutative if the following 

axioms holds. 

Commutativity : a* b = b*a for every a , b ∈ G. 

Example  : a set of integers is a group with respect to the operation 

of addition of integers. 

 

4.NON ABELIAN GROUP 

 

Group (G, ∗) in which there exists at least one pair of elements a and 

b of G, such that a ∗ b ≠ b ∗ a. 

 

5.SUBGROUP 

 

If a subset of a group G is closed under the binary operation of G and  
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if H with the induced operation  from G is itself is a group ,  then H is 

a subgroup of G  . We denote it as 

H ≤ G 

Example 

• ( z , +)  is a subgroup of (R , +) 

• (Q , +) is a subgroup of  ( R ,+) 

 

6.CYCLIC SUBGROUP 

 

Let G be a group  and let a € G . Then , H  = {an  : n ∈ Z }  is the cyclic  

subgroup of G  generated by ‘ a’ . Cyclic subgroup of  G generated by 

‘a’ is denoted by <a>. 

 

7.HOMOMORPHISM OF GROUPS  

 

Let (G,o) & (G’,o’) be 2 groups, a mapping “f ” from a group (G,o) to a 

group (G’,o’) is said to be a homomorphism if  

f(aob) = f(a) o' f(b) ∀ a,b ∈ G 

The essential point here is : The mapping f : G –> G’ may neither be a 

one-one nor onto mapping, i.e, ‘f’ needs not to be bijective 
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8.ISOMORPHISM 

 

Two groups are said to be isomorphic if there exist bijective 

homomorphism between them. 

 

9.ORDER OF A GROUP AND ORDER OF AN ELEMENT 

 

The order of a group (G) is the number of elements present in that 

group, i.e it's cardinality. It is denoted by |G|. Order of element a ∈ 

G is the smallest positive integer n, such that an= e, where e denotes 

the identity element of the group, and an denotes the product of n 

copies of a. 

 

10.COSETS 

 

Let H be a subgroup of group G , and let a ∈  G . The left coset aH of 

H is the set { ah/ h ∈ H} . That is , 

aH = {ah / h ∈ H } 

The right coset Ha of H is the set {ha/h ∈ H } . That is , 
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Ha = {ha/h ∈ H} 

 

11.LAGRANGE'S THEOREM 

 

Let H be a subgroup of finite group G . Then the order of H is a divisor 

of order of G. I.e  O(H) divides O(G). 

 

12.INDEX OF H IN G 

 

Let H be a subgroup of G . The number of left left cosets  of H in G is 

the index (G:H) of H in G 

(G:H) = O (G)/ O(H) 

 

13.NORMAL SUBGROUPS 

 

A subgroup H of a group G is a normal subgroup of G  if ghg-1 ∈ H for 

all g ∈ G. 
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14.TRIVIAL GROUP 

 

A group consisting of single element. 

 

 

15.DIHEDRAL GROUP 

 

Dihedral group is the group of symmetries of a regular polygon, 

which includes rotations and reflections. Dihedral groups are among 

the simplest examples of finite groups. 

A dihedral group 

D2n = <x,y | xn = 1, y2 = 1, yxy = x-1> 

 

16.CAUCHYS THEOREM 

 

Cauchy's theorem states that if G is a finite group and p is a prime 

number dividing the order of G (the number of elements in G), then 

G contains an element of order p. 
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17.QUATERNION GROUP Q8 

The quaternion group is one of the two non abelian groups of the 

five finite groups of order 8 

Q8 = < x,y | x4 = 1, x2 = y2, yxy-1 =x-1> 

 

18.FIRST SYLOW THEOREM 

 

Let G be a finite group and p a prime number. If p divides the order 

of G, then G has a subgroup of order p. 

 

19.SYLOW p-SUBGROUP 

 

If pk is the highest power of a prime p dividing the order of a finite 

group G, then a subgroup of G of order pk is called a Sylow p-

subgroup. 

 

20.SECOND SYLOW THEOREM 
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Let P be a Sylow p-subgroup of the finite group G. Let Q be any p-

subgroup of G. Then Q is a subset of a conjugate of P. 

 

21.THIRD SYLOW THEOREM 

 

Any two p-Sylow subgroups of a finite group G are conjugate. 

Moreover if P is the number of distinct p-Sylow subgroups of G, then 

P divides |G| and P = pt + 1 for some integer t ≥ 0.   

 

22.KERNEL 

 

The kernel is the set of all elements in G which map to the identity 

element in H. 

 

23.SECOND ISOMORPHISM THEOREM  

 

Let G be a group, let H ≤  G  and let N ⊴ G. Then the set 

HN = { hn : h ∊ H, n ∊ N } 

is a subgroup of G,  H ∩ N ⊴ H, and H/ (H ∩ N) ≃ HN/N. 

where ⊴ means normal subgroup of or equal to. 
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Chapter 2 

GROUPS OF ORDER PRIME p AND 2p 
  

Proposition 2.1   

There is only one group of order prime upto isomorphism  

Lemma 2.1.1 :  

Every group of prime order is cyclic  

Proof :  

Let p be a prime and G be a group such that |G| = p. Then G contains 

more than one element. Let g ɛ G such that g ≠ eG . Then  

<g> contains more than one element. Since <g> ≤ G, by Lagrange’s 

theorem, |<g>| divides p. Since |<g>| > 1 and |<g>| divides a prime, 

|<g>| = p = |G|. Hence, <g> = G. It follows that G is cyclic. 

Lemma 2.1.2 :  

Any finite cyclic group is isomorphic to Zn 

Proof : 

Let Ф be a function from Z or Zn to <a> 

i.e,  Փ (K) = aᴷ  

Փ (K1 +K2) = aᴷ1 aᴷ2 = Փ (K₁) Փ  (K₂)  

Փ (K₁) = Փ (K₂) ⇒ aᴷ1 = aᴷ2⇒ aK1-K2= e  
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When <a> is finite , this is only possible when K1 = K2. When <a> has 

order n, this means n|(K1 – K2). This means K1 = K2 because K1,K2  ∈ 

Zn. Therefore, Փ  is one-to-one.  

Every element in <a> can be written as ak = Փ (K). When <a> has 

finite order, K ∈ Z. Therefore, Փ  is onto.  

Therefore, Փ  is an isomorphism from Z or Zn to <a>  

Result : 

The consequence of this is that the group of orders  

1, 2, 3, 5, 7, 11, 13 …. have only one group upto isomorphism  

For n=1 , the trivial group <e> = {e} 

For n = 2, 3 , 5, 7, 11, 13   

 Z2, Z3, Z5, Z7, Z11, Z13 

Proposition 2.3 :  

There are exactly two isomorphism classes of group of order 2p 

where p is prime.   

Lemma 2.3.1: 

  

If p is an odd prime,  then  every group of order 2p is isomorphic 

either to the cyclic group Z2p or the dihedral group Dp of order 2p  
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Proof:  

Let G be a group of order 2p, where p is an odd prime.  

By Cauchy’s theorem, G has an element a of order p and b of order 2.  

Let H=(a)={e,a,a²,..........p-1}.  

Since H does not contain any element of 2, b € H.  

Since  {G:H} =2 ⇒ H is normal in G.  

Therefore , bab-1 ∈ H.  

Since a ≠ e ⇒ bab-1  ≠ e.  

Hence , bab-1  = at for some t with 1 ≤ t ≤ p-1.  

Then as o(b) = 2,  

A = b²ab-2 = b(bab-1)b-1 = batb-1 = (bab-1)t = (at)t= at² 

 ⇒at²-1 = e 

But 0(a) = p ⇒p divides  t²-1 = (t-1)(t+1).  

Hence p divides t-1 or t+1.  

This is possible only if t=1 or t= p-1.  

Result : 

Thus there are two non isomorphic groups of order 6, one is abelian 

and the other is non abelian viz, Z6 and D3. 

Thus there two isomorphic group of order 10, one is abelian and the 

other is non abelian, viz. Z10 and D5. 
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Similarly there are two non isomorphic group of order 14, one is 

abelian and the other is non abelian ,viz. Z14 and D7. 
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Chapter 3 

GROUPS OF ORDER PRIME SQUARE 
(p²) AND PRIME CUBE (p³) 

 

 

Proposition 3.1 : 

There are only two groups of order p², where p is a prime. 

 

Lemma 3.1.1 : 

If p is a prime number, then any group of order p² is abelian. 

Proof : 

 Let  G be a group and O(G)=p² 

and Z(G) be the centre of group. 

 

So we need to show that G=Z(G). 

Since Z(G) is a subgroup of G 

       ⇒ IZ(G)I / IGI 

       ⇒ O(Z(G)) = p or p² 

If O(G) = p² ⇒ Z(G) = G 

Hence G is abelian 
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So let O(G) = p 

Let a∈G, a ∉ Z(G) 

∃ N(a) is a subgroup of G 

        Z(G) ≤ N(a) 

  Let x ∈ Z(G) 

          ⇒ xy = yx  ∀ y∈G 

          ⇒ xa = ax ∀ a∈G 

          ⇒ x ∈ N(a) 

          ⇒ Z(G) < N(a) 

          ⇒ O(Z(G)) < O(N(a)) 

a ∉Z(G) 

         ⇒ a∈N(a) 

But N(a) is subgroup of G. 

⇒ O(N(a)) / O(G) 

⇒ O(N(a)) = p² 

⇒ N(a) = G 

⇒ a ∈Z(G) 

which is a contradiction 

⇒ O(Z(G)) ≠ p 
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⇒ O(Z(G)) = p² 

⇒ Z(G) = G 

Hence G is abelian. 

 

Lemma 3.1.2 : 

Let p be prime there are only two groups upto isomorphism of order 

p2 

Proof : 

Suppose G is a p2 group. It is abelian.  

According to Lagrange Theorem, the divisors of p2 are 1, p, p2. 

Let  x has order p2 then G = <x> generates all the  

elements of the group G = p2  

So G is cyclic. This satisfies the earlier notation that G is abelian.  

        G ≅ Zp² 

Now assume that there is no element of order p2. 

This means that every element which is not the identity  

has order p.  Pick x order p.  Since  < x > ≤ G, you can take  

another order p element  y in the complement of < x >. 
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Now  

ϴ: (u, v) → uv  

yields a homomorphism from <x> × <y> to G.  

Note that <x> n <y> = <e>, so the latter is injective. Since  

by Lagrange theorem both groups have same cardinality, it  

follows that ϴ is an isomorphism. If  < y > is a complement  

of  < x > it suffices that only the identity element will be the  

intersection since they are different primes. And of course  

we all know that the cardinality of primes is always the  

same. It implies that ϴ is an isomorphism.  

Finally since  < x >  ≅ < y > ≅ Zp  

G ≅ < x > × < y > ≅ Zp × Zp  

So G is either isomorphic to Zp 

2 or to Zp × Zp of course the implication of this is that every 

 group of p2 is either Zp²  or Zp × Zp. 

i.e. there are only two groups of order p2 up to  

isomorphism.  

This covers groups of order 4, 9…  
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Proposition 3.2 

There are five groups of order p3 either  

1. G ≅ Zp³  ≅ Zp × Zp²  ≅ Zp × Zp  × Zp  Or  

2. G ≅Dp³ ≅ Qp³ 

 

Proof 

From the proposition above (3.2) we can deduce that by  

transitive property that  

G ≅ Zp³ 

G ≅ ZP × ZP² 

G ≅ ZP × ZP × ZP 

G ≅ Dp³ 

G ≅ Qp³ 

 

That’s five groups in total  

by disjunctive syllogism i.e. either / or,  

Suppose G is not cyclic  

by Lagrange theorem  

only divisors of p3 

1, p, p2 , p3  
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But we can’t take order p3 because  

< x > = p3 will generate all the members of the group  

making it cyclic. So we have 1, p, p2. 

Suppose we take |b| = p;  < b > will generate all the  

members of p and suppose we take |a|= p2; < a > will  

generate all the members of p2. Hence group of order p3 

must contain some cyclic groups.  

But let order p3 have x, y & z; recall G = Zp³  

hence |< x >| ≤ G and |< y >| ≤ G also |< z >| ≤ G  

F: (x, y, z) ⟶ x × y × z  

Let F be a homomorphism that map < x > × < y > × < z > to G  

Of course since {x, y, z} ∈ p2 and also {x, y, z} is contained in p2. 

Then < x > ∩ < y > ∩ < z > = e and they must have the same 

cardinality  iff  {x, y, z} are subgroups of order p2 and are  

contained in G i.e.  G = p3 

then G ≅ < x > ≅ < y > ≅ < z > ≅ Zp³ 

G ≅ < x > × < y > × < z > ≅ Zp² × ZP 

G ≅ < x > × < y > × < z > ≅ ZP × ZP × ZP  

But if |b| = p & | a| = p2; then b = 2 
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Hence b is an evolution; therefore being its own inverse  

ab = (ab)-1 = b-1a-1 

But b is an evolution  

⇒ ab = ba-1 and from the dihedral group we know that  

D2n = < a, b / an = y2 = 1; ab = ba-1>  

And also of the Quaternion group  

Q4n = < a, b / a2n = y4 = 1; ab = ba-1>  

the same way a, b relate to the cyclic group of order p3, is  

the same way a, b relate to the dihedral and Quaternion  

groups of same order.  

G ⇒ dihedral G ⇒ Quartenion & G ⇒ cyclic  

This covers groups of order 8. 
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Chapter 4 

GROUPS OF ORDER pq AND p2q 
 

Proposition 4.1 

If G is a group of order pq for some primes  p, q such that p>q and q 

doesn't divide (p-1) then 

                          G ≅ Zpq≅ Zp × Zq 

Proof : 

We can find a unique sylow p and sylow q subgroups of G. 

 By the third sylow theorem,  

 Let Sq be sylow q  & Sp be sylow p 

Sp| q and Sp= 1 + kp 

Since q is a prime the first condition gives Sp = 1 or Sq= q 

Since p>q the second condition implies then that Sp = 1.  

Similarly let Sq be the number of sylow q- subgroups of G. 

 

We have 

Sq | p and Sq= 1+ kq 

the first condition gives Sq = 1 or Sq = p.   

If Sq = p  then the first second condition gives p = 1 + kq, or p - 1 = kq 

This is however impossible since q doesn't divide (p-1).  

Therefore, we have Sq = 1. 



27 
 

It means we have a unique sylow p subgroup and a unique sylow q 

subgroup. By the second law of Sylow’s theorem, every element of G 

of order p belongs to the subgroup p and every element of order q 

belongs to the subgroup q. It follows that G contains exactly p -1 

elements of order p, exactly q-1 elements of order q and one trivial 

element of order 1. Since for p,q we have 

         pq > (p-1) + (q-1) + 1 

There are elements of G of order not equal to 1, p or q. Any such 

element must have order pq. 

We can assume an element x of order p and y of order q:  y is a 
complement of x 

|<x>|≤ G and |<y>| ≤ G 

 F: (x, y) → x × y 

Let F be a homomorphism from <x> × <y> to G, 

We have the right to do that since <x> n <y>= {e}. By Lagrange 

theorem, the divisors of prime (p) are {1 and p}, hence it follows that 

|x| and |y| have the same cardinality. It suffices that F is an 

Isomorphism 

<x> ≅ <y> ≅ Zpq 

G ≅ <x> × <y> ≅ Zp × Zq 

this covers groups of order 15... 
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Corollary 4.1.1: 

Every group of Zpq  is isomorphic to Zp × Zq and there is only one order 

pq. 

 

Proposition 4.2 

For every Abelian group of order p2q; 

                 (i)  G ≅ Zp² × Zq 

                 (ii) G ≅ Zp × Zp × Zq 

Proof :  

Suppose G is a finite group of order p²q for all p, q distinct primes p² 

is not congruent to 1 mod p and q is not congruent to1 mod p, then 

G is Abelian.  

By sylow's theorem, 

 np = 1+ kp and it must divide p2q. 

So, 1+ kp/q and because q is not congruent to 1 mod p  

       ⇒ np = 1.  

This means we have a unique sylow p (G) for an example of p in the 

group and is normal and also Isomorphic to Zp² or Zp × Zp. 

Since q does not divide p² - 1, therefore nq = 1+ kq is not congruent 

to p, p2. So we also have a normal sylow q (G). 
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 Hence G is Abelian, 

       G ≅ Zp² × Zq 

       G ≅ Zp × Zp × Zq 

 

Another simpler way to see this is;  

         np²/q=1 mod p²= {1, p, p²} 

         nq/p² = 1 mod q = {1, q) = 1 

Hence sylow q (G) is characteristically normal in G, that is we have a 

unique sylow q (G). 

Let order p²q have x², y.  ⩝ G = p²q, and let x² ∊ p² and y ∊ q, 

  |< x² >| ≤ G, also | < y > | ≤ G 

 

Suppose θ : x², y → x²× y is a homomorphism that maps x², y to G. 

Since y has order prime (q), and p and q are distinct;  

       x² ∩ y = {e} and   | x2|=| y |,   hence x² ≅ |y| ≅ x × x × y  

                G ≅ x²× y 

                G ≅ x × x × y 

  Hence; G ≅ Zp² ×  Zq  

                G ≅ Zp × Zp × Zq 

 This covers abelian groups of order 12. 
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Corollary 4.2.1 :  

There are only two abelian groups of order p²q, upto isomorphism. 

  

Proposition 4.3 

There are exactly three non abelian group of order 12. 

Proof:  

First suppose that Sylow 3-subgroup of G is normal. By Cauchy's 

theorem, G has an element a of order 3. Then 〈 a 〉 ⊲ G. Let A be a 

Sylow   

2-subgroup of G. Then |A| = 4 (= 2²), hence abelian.  

 Thus, either A ≃ Z2⊕ Z2 or A ≃ Z4 , and G = 〈a〉 A. 

        First assume that A ≃ Z2⊕ Z2.  If every element of A commutes 

with a, then G is abelian. Thus, there is at least one element of A 

which does not commute with a.  

        Since A ≃ Z₂ ⊕ Z₂, so nonidentity elements of A are u, v and uv. 

Without any loss of generality we can assume that uau ≠ a.  

Thus, uau = a-1.  If va ≠ av, then vav = a-1, and so uvauv = a, 

 that is uv commutes with a.  

 If uvauv = a-1, then vav = u(uvauv)u = u(a-1)u = a.  

Thus there is exactly one element of A which commutes with a.  

Let it be v. Then x = av, is of order 6. 

 Let y ∊ A such that y does not commute with a. Then yay = a-1.  
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Now yxy = yayyvy = a-1v = (av)-1 = x-1. 

 Thus, G = 〈x, y | x6 = 1, y² = 1, yxy = x-1〉, a dihedral group of order 12. 

         Let A ≃ Z4. Then A = 〈y〉 for some y ∊ G and a and y will not 

commute; otherwise G will be abelian.  

Since o(a) = 3, so yay-1 = a-1. Thus, y²ay-2 = a  that is, y² commutes 

with a.  

Let x=ay2.  Then o(x) = 6 and x3 = a³ y6= y2.  

 Finally  

(xy)2 = xyxy = (ay2)y(ay2)y= (ay³) (ay³) = y³(yay-1)ay-1 = y³(a-1a)y¯¹ = y².  

Thus, G is isomorphic to T.  

Finally, we assume that Sylow 3-subgroup is not normal in G.  

Let P be a Sylow 3-subgroup of G. Then |G: P| = 4 and there is a 

homomorphism Ψ: G → S4 such that ker Ψ ≤ P.  

Since |P|= 3, so kerΨ = {1} or P. If kerΨ = P, then P ⊲ G, which is not 

the case, and so kerΨ = {1}. Hence, Ψ: G → S4 is a monomorphism. 

Thus, Ψ(G) is a subgroup of S4 of order 12. 

 If  Ψ(G) ≠ A4, then Ψ(G) A4 ≤ S4 and |Ψ(G) A4/A4| = 2, by second 

isomorphism theorem |A4/Ψ(G) ∩ A4|= 2  a contradiction as A4 has 

no subgroups of order 6. 

Thus, Ψ(G) = A4, and so G ≃ A4. 
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Result:  

 There are five isomorphism classes of groups of order 12. 

                    Z4  × Z3 

                    Z2 × Z2 × Z3 

                    A4 

                               D12 

                              T = (x,y | x6 = 1, y2 = x3 = (xy)3) 
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CONCLUSION 
 

Here we classified groups of order less than or equal to 15. We 

proved that there is only one group of order prime up to 

isomorphism, and that all groups of order prime (p) are abelian 

groups. This covers groups of order 2,3,5,7,11,13. Again we were 

able to prove that there are up to isomorphism only two groups of 

order 2p, where p is prime and p ≥ 3, and this is Z2p ≅ Z2 × ZP (where Z 

represents cyclic group) and DP (the dihedral group of the p-gon). 

This covers groups of order 6, 10, 14 and we proved that up to 

isomorphism there are only two groups of order p2 and these are Zp²
 

and Zp × Zp . This covers groups of order 4, 9. Groups of order p3 was 

also dealt with, and we proved that there are up to isomorphism five 

groups of order P3 which are Zp³, Zp² × Zp, ZP × ZP ×  ZP, Dp³ and Qp³. This 

covers for groups of order 8. Sylow’s theorem was used to classify 

groups of order  pq, where p and q are two distinct primes.  

And there is only one group of such order up to isomorphism, which 

is Zpq ≅ Zp ×  Zq. This covers groups of order 15. Sylow’s theorem was 

also used to classify groups of order p2q and t here are only two 

abelian groups of such order which are Zp²q and Zp × Zp × Zq. This covers 

order 12. Finally groups of order one are the trivial groups. And all 

groups of order 1 are abelian because the trivial subgroup of any 

group is a normal subgroup of that group.  
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CLASSIFICATION OF GROUPS OF ORDER UPTO 15 

ORDER GROUP 

      1 Z1 

      2 Z2 

      3 Z3 

      4 Z4 

Klein 4 – group V ≅ Z2 ×  Z2 

      5  Z5 

      6 Z6 ≅ Z2 ×  Z3 

D3 

      7 Z7 

     

      8 

 

Z8 

Z2 ×  Z4 

Z2 ×  Z2 ×  Z2 

D4 

Q8 

      9 Z9 

Z3 ×  Z3 

      10 Z10 ≅  Z2 ×   Z5 

D5 

       11 Z11 

        12 Z12 ≅ Z3 ×   Z4 
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Z2 Z6 ≅ Z2 ×   Z2 ×   Z3 

D6 

A4 

T 

 

      13 Z13 

      14 Z14 ≅ Z2 ×   Z7 

D7 

       15 Z15 ≅ Z3 ×   Z5 
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