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ABSTRACT 

 

 

The goal for this project is to allow us to understand the various aspects of Inner 
product spaces. It will give a deep insight on analysis, especially functional analysis 
and it has many applications in branches including matrix algebra, algebraic 
geometry etc. It is an essential tool of functional analysis and vector theory, allow 
analysis of classes of functions rather than individual functions. 
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INTRODUCTION 
 

INNER PRODUCT SPACE 

 
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) 
is a real vector space or a complex vector space with an operation called an inner 
product. The inner product of two vectors in the space is a scalar, often denoted with 
angle brackets such as in 〈𝒂, 𝒃〉. Inner products allow formal definitions of intuitive 
geometric notions, such as lengths, angles, and orthogonality (zero inner product) of 
vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner 
product is the dot product or scalar product of Cartesian coordinates. Inner product 
spaces of infinite dimension are widely used in functional analysis. Inner product 
spaces over the field of complex numbers are sometimes referred to as unitary 
spaces. The first usage of the concept of a vector space with an inner product is due 
to Giuseppe Peano, in 1898. 
 
           Peano called his vector spaces “linear systems” because he correctly saw that 
one can obtain any vector in the space from a linear combination of finitely many 
vectors and scalars — av + bw + … + cz. A set of vectors that can generate every 
vector in the space through such linear combinations is known as a spanning set. 
The dimension of a vector space is the number of vectors in the smallest spanning 
set. 

         The linearity of vector spaces has made these abstract objects important in 
diverse areas such as statistics, physics, and economics, where the vectors may 
indicate probabilities, forces, or investment strategies and where the vector space 
includes all allowable states.  

          An inner product naturally induces an associated norm, (denoted |x| and |y|); 
so, every inner product space is a normed vector space. If this normed space is also 
complete (that is, a Banach space) then the inner product space is a Hilbert space. If 
an inner product space H is not a Hilbert space, it can be extended by completion to 
a Hilbert space 𝑯 .This means that H is a linear subspace of  𝑯 , the inner product of 
H is the restriction of that of  𝑯 and H is dense in 𝑯 for the topology defined by the 
norm. 
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PRELIMINARIES 

 
Basic definitions 

 
 

Vector space  

 
A vector space is a set whose elements, often called vectors, may be added together 
and multiplied by numbers called scalars. Scalars are often real numbers, but can be 
complex numbers or, more generally, elements of any field. 
 

Subspace 

 
A Subspace is a Vector Space included in another larger Vector Space. Therefore, 
all properties of a Vector Space, such as being closed under addition and scalar 
multiplication still hold true when applied to the Subspace. 
 

Norm 

 
A norm is a function from a real or complex vector space to the non-negative real 
numbers that behaves in certain ways like the distance from the origin 
 

Closed set 

 
Closed set can be defined as a set which contains all its limit points. 
 

Convex set 

 
A subset of a Euclidean space is convex if, given any two points in the subset, the 
subset contains the whole line segment that joins them. Equivalently, a convex set or 
a convex region is a subset that intersects every line into a single line segment. 
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Linearly independent  

 
A set of vectors is said to be linearly dependent if there is a nontrivial linear 
combination of the vectors that equals the zero vector .If no such linear combination 
exists, then the vectors are said to be linearly independent. 
 

Span 

 
The span of a set of vectors is the set of all linear combinations of the vectors. 
 

Eigen spaces  

 
A set of the eigenvectors associated with a particular eigen value, together with the 
zero vector. 
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Chapter 1 
 

INNER PRODUCT SPACE 
 
 

An inner product space (or pre-Hilbert space) is a vector space X with an inner 
product defined on X. A Hilbert space is a complete inner product space. Here, an 
inner product on X is a mapping of X×X into the scalar field K of X; that is, with 
every pair of vectors x and y there is associated a scalar which is written 

 
                                                     〈𝑥, 𝑦〉 

 
and is called the inner product' of x and y, such that for all vectors x, y, z and scalars  
α we have 
 
(IP1)                 〈𝑥 + 𝑦, 𝑧〉 = 〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉 
 
(IP2)                 〈𝛼𝑥, 𝑦〉 = α 〈𝑥, 𝑦〉 
 

(IP3)                 〈𝑥, 𝑦〉 =  〈𝑦, 𝑥〉 
 
(IP4)                 〈𝑥, 𝑥〉 ≥ 0 
 
                         〈𝑥, 𝑥〉 = 0     ⟺   𝓍 = 0 
 
 
An inner product on X defines a norm on X given by 
 
(1)                     ||x|| = √〈𝑥, 𝑥〉                                           (≥0) 
 
and a metric on X given by 

 
(2)                    d(x, y)  =  || x - y ||  =  √〈𝑥 − 𝑦, 𝑥 − 𝑦〉. 
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Hence inner product spaces are normed spaces. 

 
In (IP3), the bar denotes complex conjugation. Consequently, if X is a real vector 
space, we simply have 

 
                        〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉  
 

 

 

 

Theorem 1 

 
 

If x ϵ H and y ϵ H, where H is an inner product space, then 
 
(1)            |(x, y)|  ≤  ||x|| ||y|| 
 
and 
 
(2)            ||  x + y ||  ≤   ||x||  +  || y||. 
 
Moreover 
 
(3)            ||y||   ≤  || 𝞴x + y ||    for every 𝞴 ϵ Ȼ 
 
if and only if  x ⊥ y. 
 
 
 

Theorem 2 
Every nonempty closed convex set E ⊂ H contains a unique x of minimal norm. 
 

PROOF 
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The parallelogram law 
 
(1)            || x + y ||² + || x – y ||²  =  2 || x ||² +  2 || y ||²            (x ϵ H, y ϵ H) 
 
follows directly from the definition || x || ² =  (x, x).  Put 
 
(2)            d = inf  { || x || : x ϵ E }. 
 

Choose 𝑥  ϵ E so that   ||𝑥 || → d. Since    (𝑥 + 𝑥 )  ϵ  E, ||𝑥 + 𝑥  ||² > 4d². If x 

and y are replaced by 𝑥  and  𝑥  in (1), the right side of (1) tends to 4d². Hence (1) 
implies that {𝑥  } is a Cauchy sequence in H, which therefore converges to some x ϵ 
E, with       || x || = d.  

         If y = E and || y || = d, the sequence (x, y, x, y,...) must converge, as we just 
saw. Hence y = x. 
 
 
 
 

Theorem 3 

If M is a closed subspace of H, then 
 

H = M ⊕ 𝑀⟘. 
 

The conclusion is, more explicitly, that M and 𝑀⟘ are closed subspaces of H whose 

intersection is {0} and whose sum is H. The space 𝑀⟘ is called the orthogonal 
complement of M. 
 

PROOF 

If E⊂H, the linearity of (x, y) as a function of x shows that 𝐸⟘ is a subspace of H, and 

the Schwarz inequality (1) of Theorem 1 implies then that 𝐸⟘ is closed.  

        If x ϵ M and x ϵ 𝑀⟘, then (x, x) = 0; hence x = 0. Thus 𝑀 ∩ 𝑀⟘ = {0}. 

 If x ϵ H, apply Theorem 2 to the set x - M to conclude that there exists x₁ ϵ M that 
minimizes || x - x₁ ||.Put x₂ = x - x₁. Then || x₂ || ≤   || x₂ + y || for all y ϵ M. Hence x₂ ϵ 

𝑀⟘, by Theorem 1 Since x = 𝑥 + 𝑥 , we have shown that M + 𝑀⟘= H. 
 

Corollary 
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 If M is a closed subspace of H, then 
 

(𝑀⟘)⟘ = M. 
 
PROOF  

The inclusion M ⊂ (𝑀⟘)⟘ is obvious. Since 

 M ⊕ 𝑀⟘ = H =  𝑀⟘ ⊕ (𝑀⟘)⟘ ,  

 M cannot be a proper subspace of (𝑀⟘)⟘  . 
 
We now describe the dual space H* of H. 
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Chapter 2 
ORTHOGONAL AND 

ORTHONORMAL SETS 
 

In a metric space X, the distance δ from an element xϵ X to a nonempty subset M ⊂ 

X is defined to be 

𝛿 =  Infỹ∊   𝑑( 𝑥, ỹ) (M≠∅) 

In a normed space this becomes 

(1)𝛿 =  Infỹ∊  ‖ 𝑥 − ỹ ‖(M≠ ∅ ) 

 

(2)                                                                 𝛿 =  ‖ 𝑥 − 𝑦 ‖, 

 

Direct sum 
 

A vector space X is said to be direct sum of two subspaces Y and Z o f X, written 

X = Y⊕Z 

If each x ∊ X has a unique representation 

                                                 x = y + z                                                                                   

y ϵ Y, z ϵ Z. 

Then Z is called an algebraic compliment of Y in X and vice versa, and Y, Z is 

called a complementary pair of subspaces in X. 
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Orthonormal Sets 

An orthogonal set M in an inner product space is a subset M ⊂X whose elements 

are pair wise orthogonal. An orthonormal set M ⊂X is an orthogonal set X in whose 

elements have norm 1, that is, for all x, y ∊M, 

(1) 〈𝑥, 𝑦〉 =
 0, 𝑖𝑓𝑥 ≠  𝑦

 1,   𝑖𝑓  𝑥 =  𝑦
 

 

If an orthogonal or orthonormal set M is countable, we can arrange it in a sequence 

(𝑥 )  and call it an orthogonal or orthonormal sequence, respectively. 

     More generally, an indexed set, or family, (𝑥 ), α ∊I, is called orthogonal if 
𝑥 ⊥  𝑥  for all 𝛼, 𝛽 ∊ Iwe have 

(2)〈𝑥 , 𝑥 〉 = 𝛿  =  
 0, 𝑖𝑓  𝑥 ≠  𝑦
 1,   𝑖𝑓  𝑥 =  𝑦

 

Here, 𝛿  is the Kronecker delta. 

  For orthogonal elements 𝑥, 𝑦 we have 〈𝑥, 𝑦〉  =  0, so that we readily obtain the 
Pythagorean relation 

(3)‖𝑥 +  𝑦‖ = ‖x‖ +  ‖𝑦‖  

 

Linear independence 
An orthonormal set is linearly independent. 

 

PROOF  

 Let { 𝑒 , .  .  . , 𝑒 } be orthonormal and consider the equation  

𝛼 𝑒  + .  .  . + 𝛼 𝑒  =  0 

Multiplication by a fixed 𝑒 gives 

𝑎 𝑒 , 𝑒  =  𝑎 𝑒 , 𝑒  =  𝛼 𝑒 , 𝑒  =  𝛼  =  0 
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       And proves linear independence for any finite orthonormal set. This also implies 
linear independence if the given orthonormal set is infinite, by the definition of linear 
independence. 

 

Examples 

Euclidean space 𝑅 . In the space𝑅  , the three unit vectors (1, 0, 0), (0, 1, 0), (0, 

0, 1) in the direction of three axes of a rectangular coordinate system form an 
orthonormal set. 

Space 𝑙 .In the space 𝑙 , an orthonormal sequence is (𝑒 ), where 𝑒  =  (𝛿 ) has 

the nth element 1 and all others zero. 

 

Total orthonormal set 

A total set (or fundamental set )in a normed space X is a subset M ⊂ X whose span 

is dense in X. Accordingly, an orthonormal set (or sequence or family) in an inner 

product space which is total in X is called  a total orthonormal set (or sequence or 

family, respectively ) in X. 

            M is total in X if and only if 

span 𝑴  = X 

This is obvious from the definition. 

 A total orthonormal family in X is sometimes called an orthonormal basis for X. 

However, it is important to not that this is not a basis, in the sense of algebra, for X 

as a vector space, unless X is finite dimensional. 

In every Hilbert space H≠ {0} there exists a total orthonormal set. 
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Chapter 3 

 

SELF-ADJOINT,UNITARY AND 
NORMAL OPERATORS 

 
 
 
 
Hilbert- adjoint operator T* 
 
 Let T: H₁→ H₂ be a bounded linear operator, where H₁ and H₂ are Hilbert spaces. 
Then the Hilbert-adjoint operator T* of T is the operator 
 
                                         T* : H₂ → H₁ 
 
such that for all x ϵ H₁, and y ϵ H₂, 
 
(1)                                    〈𝑇𝑥, 𝑦〉 = 〈𝑥, T∗y〉. 
 
 
Theorem  (Properties of Hilbert-adjoint operators).  
 
Let H₁, H₂ be Hilbert spaces, S: H₁→H₂ and T: H₁→H₂ bounded linear operators and 
α any scalar. Then we have 
 
     (a)                                    〈T ∗ y, x〉 = 〈y, Tx〉                      (x ϵ H₁, y ϵ H₂) 
 
     (b)                                    (S + T) ∗ = S* + T* 
 
     (c)                                    (α T)* = αT* 
 
(6) (d)                                    (T*)* = T 
 
      (e)                                    || T*T || = || TT*|| = ||T||²  
 
      (f)                                     T*T=0       ⟺       T=0 
 
      (g)                                    (ST)* = T*S*                       (assuming H₂=H₁). 
 
 Definition 
 
 
An operator T ϵ B (H) is said to be 
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(a) normal if TT* = T*T, 
 
(b) self- adjoint (or hermitian) if T* = T, 
 
(c) unitary if T*T = I = TT*, where I is the identity operator on H, 
 
(d) a projection if T² = T. 
 
 
 
Theorem 
 
 An operator T ϵ B (H)  is normal if and only if 
 
(1)                      || T x || = || T*x || 
 
for every x ϵ H. Normal operators T have the following properties: 
 
 
(a) N (T) = N (T*). 
 
(b) R  (T) is dense in H if and only if T is one-to-one. 
 
(c) T is invertible if and only if there exists 𝛿 > 0 such that || T x || ≥ 𝛿 || x || for every x 
ϵ      H. 
 
(d) If T x = 𝛼x for some x ϵ H, 𝛼 e Ȼ, then T*x = 𝛼x. 
 
(e) If 𝛼 and 𝛽 are distinct eigen values of T, then the corresponding eigen spaces are 
orthogonal to each other. 
 
 
Theorem (Self-adjointness of product) 
 
 The product of two bounded self-adjoint linear operators S and T on a Hilbert space 
H is self-adjoint if and only if the operators commute, 
 
                                   ST = TS. 
 
Proof 
 
By property of Hilbert-adjoint operators and by the assumption, 
 
                                (ST)*= T*S* = TS. 
 
Hence             
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                                ST = (ST)*        ⟺        ST = TS. 
 
This completes the proof. 
 
 
 
Theorem (Unitary operator) 
 
 
 Let the operators U: H→H and V: H→H be unitary; here, H is a Hilbert space. Then: 
 
(a) U is isometric ; thus ||U x|| = || x || for all x ϵ H; 
 
(b) ||U|| = 1, provided H ≠ {0}, 
 
(c) 𝑈 (=U*) is unitary, 
 
(d) UV is unitary, 
 
(e) U is normal. 
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Chapter 4 

APPLICATIONS OF INNER 
PRODUCT SPACE 

 

This section is important for applications of the geometric properties of an inner 
product space. However, it can be skipped without affecting our development of the 
theory. Here we deal with some problems of approximation which have a bearing on 
optimization subject to certain constraints. We consider the following question. What 
best can be done if we want to come close to a given element of an inner product 
space X while having to remain in a given subset of X? To formalize our study, we 
introduce the following notion. 
 
1. Let X be an inner product space and E be a subset of X. Given an element x of X, 
an    element y of E is said to be a best approximation from E to x if ||x - y|| ≤ ||x - z|| 
for all z € E, that is, ||x - y|| = dist(x, E). Such an element y is also known as an 
optimal solution of the following problem: 
 
                               ‘ Minimize || x – z ||  , subject to z € E.’ 
 
Then x - y is known as an optimal error. 

2. Find the linear or quadratic least squares approximation of a function. 
 
 Many problems in the physical sciences and engineering involve an approximation 
of a function f by another function g. If f is in C [a, b] (the inner product space of all 
continuous functions on [a, b]), then g is usually chosen from a subspace W of C [a, 
b]. 
 
In particular, to approximate the function 
 
                                f(x) = 𝑒   
 
You could choose one of the following forms of g. 
 
 
1. Linear                  g(x) = 𝑎 + 𝑎 𝑥 
 
2. Quadratic            g(x) = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥  
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Definition of Least Squares Approximation 
 
Let f be continuous on [a, b] and let W be a subspace of C [a b]. A function g in W is 
called a least squares approximation of f with respect to W when the value of 
 

I = ∫ [𝑓(𝑥) − 𝑔(𝑥)]  𝑑𝑥 
 
is a minimum with respect to all other functions in W. 
 
Note that if the subspace W in this definition is the entire space C [a, b], then g(x) = 
f(x), which gives I = 0.  
 
3. Quadratic Forms. 
 

Definition 
 
 A real quadratic form q in n variables x1...., xn is a polynomial such that every term 
has degree 2. 
 
That is. 
 
q(𝑥 + 𝑥 + ⋯ 𝑥 ) = ∑ 𝑐 𝑥 + ∑ 𝑑 𝑥 𝑥  
 
Where 𝑐  ϵ R, 𝑑  ϵ R for every i, j = 1.2.....n 
 
the quadratic form q defines a symmetric matrix A = [𝑎 ], where 𝑎  = 𝑐 , and 

𝑎 = 𝑎 = 𝑑  . 

 
If the matrix A of q is diagonal, then q has the diagonal representation 
 
q(X) = 𝑋  AX = 𝑎 𝑥 + 𝑎 𝑥 … + 𝑎 𝑥  
 
That is, the quadratic polynomial representing q will contain no "cross product" 
terms. 
 
Example1 
 
If q(x₁, x₂) =5𝑥 − 8𝑥 𝑥 + 9𝑥 , Express q in matrix form.  
 
Solution  
 
 Let A = [𝑎 ], where 𝑎  is the coefficient of  𝑥 𝑥  , then, 
 

q(x₁, x₂) = [𝑥 , 𝑥 ] 5 −4
−4 9

𝑥
𝑥  
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Example2 
 
If q(𝑥 , 𝑥 , 𝑥 ) = 4𝑥 − 8𝑥 𝑥 + 6𝑥 𝑥 + 2𝑥 𝑥 + 3𝑥 + 5𝑥 , Express q in matrix form.  
 
Solution 
 
 Let A = [𝑎 ], where, 𝑎  is the coefficient of𝑥 𝑥 , then, 
 

q(𝑥 , 𝑥 , 𝑥 ) = ⌈𝑥 , 𝑥 , 𝑥 ⌉ 
4 4

−4 3
1 3

1
3
5

  

𝑥
𝑥
𝑥

 

 
4. Some of the main ones are vectors in the Euclidean space and the Frobenius 
inner product for matrices. 

 
5. Other than that, there are a lot of applications in Fourier analysis. Inner product 
spaces can be used to define Fourier coefficients for the series and the gives us a 
wide range of applications in boundary value problems. 
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CONCLUSION 
 
 

This project gives a brief overview of the subject ,precisely some theoretical results. 
The main topic under this project is Inner product space. 
 
In chapter 1, we show some important properties of inner product spaces. In chapter 
2, we focus on orthogonality and theorems regarding it. In chapter 3,we saw its 
adjoint operators and in chapter 4,we study some applications of inner product 
spaces. 
 
We consider that inner product spaces are very appropriate to deal with real 
applications and this formal study can be useful in many contexts.  
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