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CHAPTER-1 

INTRODUCTION 

 

A differential equation is a mathematical equation that relates some function with 

its derivatives. 

In applications the functions usually represent physical quantities, the derivatives 

represent their rates of change and the equation defines a relationship between the two. 

Because such relations are extremely common, differential equations play a prominent 

role in many disciplines including engineering, physics, economics and biology. 

In pure mathematics, differential equations are studied from several different 

perspectives, mostly concerned with their solutions- the set of functions that satisfy the 

equation. Only the simplest differential equations are solvable by explicit formulas; 

however, some properties of solutions of a given differential equation may be 

determined without finding their exact form.   

Many real-life problems in science and engineering, when formulated 

mathematically give rise to differential equation. The differential equation is generally 

used to express a relation between the function and its derivatives. In Physics and 

chemistry, it is used as a technique for determining the functions over its domain if we 

know the functions and some of the derivatives. 

In this section, we look at different application of first order and second order 

differential equations. The order of a differential equation is defined to be that of the 

highest order derivative it contains. first order differential equations are an equation that 

contain only first derivative, and it has many applications in mathematics, physics, 

engineering and many other subjects. The application of first order differential equation 

in temperature have been studied the method of separation of variables Newton’s law 

of cooling were used to find the solution of the temperature problems that requires the 

use of first order differential equation and these solutions are very useful in 
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mathematics, biology, and physics especially in analysing problems involving 

temperature which requires the use of Newton’s law of cooling. 

 In the following chapters, we are going to focus more in detail about the following 

applications of first order differential equations: 

i. Newton’s law of cooling 

ii. Falling object 

iii. Population growth and decay 

iv. Mixture problem 

v. Electric circuit 

vi. Spread of epidemics 

vii. Dynamics of tumour growth 

viii. Drug distribution in human body 

And applications of second order differential equations: 

i. RLC circuit 

ii. Damped spring mass system 

iii. Simple harmonic motion 

iv. Simple pendulum 
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CHAPTER-2 

EQUATIONS OF FIRST AND SECOND ORDER DIFFERENTIAL 

EQUATIONS 

 

2.1. DIFFERENTIAL EQUATION 

 A differential equation is an equation relating some function f to one more of its derivatives. 

The general form of such a differential equation is 

𝑝𝑛(𝑥, 𝑦) (
𝑑𝑦

𝑑𝑥
)

𝑛

+ 𝑝𝑛−1(𝑥, 𝑦) (
𝑑𝑦

𝑑𝑥
)

𝑛−1

+ ⋯ + 𝑝1(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
+ 𝑝0(𝑥, 𝑦) = 0 

2.1.1. EXAMPLE 

𝑑2𝑓

𝑑𝑥2
(𝑥) + 2𝑥

𝑑𝑓

𝑑𝑥
(𝑥) + 𝑓2(𝑥) = sin 𝑥 

2.2. ORDINARY DIFFERENTIAL EQUATION 

 A differential equation is an ordinary differential equation if it involves a function of a single 

variable and the ordinary derivatives of that function. 

 

2.3. ORDER OF DIFFERENTIAL EQUATION 

 An ordinary differential equation of order n is an equation involving an unknown function f 

together with its derivatives 

𝑑𝑓

𝑑𝑥
,
𝑑2𝑓

𝑑𝑥2
, … ,

𝑑𝑛𝑓

𝑑𝑥𝑛
 

 

2.4. FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS 

 An equation is said to be first-order linear if it has the form 

𝑦′ + 𝑎(𝑥)𝑦 = 𝑏(𝑥) 

2.4.1. EXAMPLE 

𝑦′ + 2𝑥𝑦 = 𝑥 

 

2.5. SEPARABLE EQUATIONS 

 A first-order ordinary differential equation is separable if it is possible, by elementary algebraic 

manipulation, to arrange the equation so that all the dependent variables (usually the y variable) are on 

one side and all the independent variables (usually the x variable) are on the other side. 
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2.5.1. EXAMPLE 

Solve the equation  𝑦 − 𝑥
𝑑𝑦

𝑑𝑥
= 𝑦2 +

𝑑𝑦

𝑑𝑥
. 

The given equation can be written as 

𝑦 − 𝑦2 = (𝑥 + 1)
𝑑𝑦

𝑑𝑥
 

⇒  
𝑑𝑦

𝑦 − 𝑦2
=

𝑑𝑥

𝑥 + 1
 

⇒  
𝑑𝑦

𝑦(1 − 𝑦)
=

𝑑𝑥

𝑥 + 1
 

⇒ (
1

𝑦
+

1

1 − 𝑦
) 𝑑𝑦 =

𝑑𝑥

𝑥 + 1
 

Integrating both sides, we get 

ln 𝑦 − ln(1 − 𝑦) = ln(𝑥 + 1) + 𝑐 

⇒  ln (
𝑦

1−𝑦
) = ln 𝑘(𝑥 + 1)          taking 𝑐 = ln 𝑘 

⇒ 𝑦 = 𝑘(1 − 𝑦)(𝑥 + 1) is the required solution. 

 

 

2.6. EXACT EQUATIONS 

A differential equation 

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 

is said to be exact if there exists a function 𝑓(𝑥, 𝑦) such that 

𝑑𝑓(𝑥, 𝑦) = 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 

Where 𝑀(𝑥, 𝑦), 𝑁(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) are continuous functions and have continuous first derivatives on 

some rectangle of the (𝑥, 𝑦) plane. 

2.6.1. EXAMPLE 

Solve the equation  (𝑥2 − 4𝑥𝑦 − 2𝑦2)𝑑𝑥 + (𝑦2 − 4𝑥𝑦 − 2𝑥2)𝑑𝑦 = 0 

Here 

𝑀(𝑥, 𝑦) = 𝑥2 − 4𝑥𝑦 − 2𝑦2 

⇒  
𝜕𝑀

𝜕𝑦
= −4𝑥 − 4𝑦 

And 

𝑁(𝑥, 𝑦) = 𝑦2 − 4𝑥𝑦 − 2𝑥2 
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⇒
𝜕𝑁

𝜕𝑥
= −4𝑦 − 4𝑥 

Thus 
𝜕𝑀

𝜕𝑦
=

𝑑𝑁

𝑑𝑥
, and hence the equation is exact. 

Then                                    𝑓(𝑥, 𝑦) = ∫ 𝑀𝑑𝑥 + 𝑔(𝑦) = ∫(𝑥2 − 4𝑥𝑦 − 2𝑦2)𝑑𝑥 + 𝑔(𝑦) 

=
𝑥3

3
− 2𝑥2𝑦 − 2𝑦2𝑥 + 𝑔(𝑦) 

⇒  
𝜕𝑓

𝜕𝑦
= −2𝑥2 − 4𝑦𝑥 +

𝑑𝑔

𝑑𝑦
 

⇒ 𝑁(𝑥, 𝑦) = −2𝑥2 − 4𝑦𝑥 +
𝑑𝑔

𝑑𝑦
 

⇒  𝑦2 − 4𝑥𝑦 − 2𝑥2 = −2𝑥2 − 4𝑦𝑥 +
𝑑𝑔

𝑑𝑦
 

⇒  𝑦2 =
𝑑𝑔

𝑑𝑦
 ⇒ 𝑔(𝑦) =

𝑦3

3
 

⇒  ∫ 𝑦2𝑑𝑦 =
𝑦3

3
 

Thus, to get g(y) we have to integrate with respect to y those terms in 𝑁(𝑥, 𝑦) which are free from x. 

 

2.7. LINEAR EQUATIONS 

 A differential equation in which the dependent variable and its differential coefficients occur 

only in the first degree is called a Linear Differential Equation. Therefore, a first order linear 

differential equation is of the form 

𝑑𝑦

𝑑𝑥
+ 𝑝(𝑥)𝑦 = 𝑄(𝑥) 

Where 𝑝(𝑥) and 𝑄(𝑥) are functions of 𝑥 only. 

2.7.1. EXAMPLE 

Solve (1 + 𝑥2)
𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑒tan−1 𝑥. 

Rewriting this equation, we get 

𝑑𝑦

𝑑𝑥
+

1

1 + 𝑥2
𝑦 =

𝑒tan−1 𝑥

1 + 𝑥2
 

∫ 𝑝 𝑑𝑥 = ∫
1

1 + 𝑥2
𝑑𝑥 = tan−1 𝑥 

Thus, the solution is 

𝑦𝑒tan−1 𝑥 = ∫ 𝑒tan−1 𝑥
𝑒tan−1 𝑥

1 + 𝑥2
𝑑𝑥 + 𝑐 
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To integrate, put tan−1 𝑥 = 𝑡. Then 
𝑑𝑡

𝑑𝑥
=

1

1+𝑥2
 

So                                                              𝑦𝑒𝑡 = ∫ 𝑒2𝑡 𝑑𝑡 + 𝑐 =
1

2
𝑒2𝑡 + 𝑐 

Therefore 

𝑦 =
1

2
𝑒tan−1 𝑥 + 𝑐𝑒− tan−1 𝑥 

Is the required solution. 

 

2.8. HOMOGENOUS EQUATIONS 

 A function 𝑔(𝑥, 𝑦) of two variables is said to be homogenous of degree α, for α a real 

number, if 

𝑔(𝑡𝑥, 𝑡𝑦) = 𝑡𝛼𝑔(𝑥, 𝑦)          for all 𝑡 > 0. 

2.8.1. EXAMPLE 

Solve (𝑥 + 𝑦)𝑑𝑥 − (𝑥 − 𝑦)𝑑𝑦 = 0. 

The above equation can be written in the form 

𝑑𝑦

𝑑𝑥
=

𝑥 + 𝑦

𝑥 − 𝑦
=

1 +
𝑦
𝑥

1 −
𝑦
𝑥

 

Putting 𝑧 =
𝑦

𝑥
, hence 𝑦 = 𝑧𝑥 and 

𝑑𝑦

𝑑𝑥
= 𝑧 + 𝑥 ∙

𝑑𝑧

𝑑𝑥
 

We get 

𝑧 + 𝑥
𝑑𝑧

𝑑𝑥
=

1 + 𝑧

1 − 𝑧
 

𝑥
𝑑𝑧

𝑑𝑥
=

1 + 𝑧2

1 − 𝑧
 

Or 

1 − 𝑧

1 + 𝑧2
𝑑𝑧 =

𝑑𝑥

𝑥
 

Integrating, 

∫
𝑑𝑧

1 + 𝑧2
− ∫

𝑧𝑑𝑧

1 + 𝑧2
= ∫

𝑑𝑥

𝑥
 

𝑎𝑟𝑐 tan 𝑧 −
1

2
ln(1 + 𝑧2) = ln 𝑥 + 𝐶 
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Putting 𝑧 =
𝑦

𝑥
, the result is 

𝑎𝑟𝑐 tan
𝑦

𝑥
− ln √𝑥2 + 𝑦2 = 𝐶 

Thus, we have expressed y explicitly as a function of x, all the derivatives are gone, and we have solved 

the differential equation. 

 

2.9. INTEGRATING FACTOR 

 An integrating factor is a function that is chosen to facilitate the solving of a given equation 

involving differentials. 

To solve a first-order linear equation 

𝑦′ + 𝑎(𝑥)𝑦 = 𝑏(𝑥) , 

Multiply both sides of the equation by the “integrating factor” 𝑒∫ 𝑎(𝑥)𝑑𝑥 and then integrate. 

2.9.1. EXAMPLE 

Solve the differential equation 𝑥2𝑦′ + 𝑥𝑦 = 𝑥3. 

The above equation can be written as 

𝑦′ +
1

𝑥
𝑦 = 𝑥 

Now 𝑎(𝑥) = 1/𝑥, ∫ 𝑎(𝑥) 𝑑𝑥 = ln|𝑥|, and 𝑒∫ 𝑎(𝑥)𝑑𝑥 = |𝑥|. 

Multiplying the differential equation through by this factor. Thus, 

𝑥𝑦′ + 𝑦 = 𝑥2 

(𝑥 ∙ 𝑦)′ = 𝑥2 

Integrating, 

∫(𝑥 ∙ 𝑦)′ 𝑑𝑥 = ∫ 𝑥2 𝑑𝑥 

𝑥 ∙ 𝑦 =
𝑥3

3
+ 𝐶 

𝑦 =
𝑥2

3
+

𝐶

𝑥
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2.10. REDUCTION OF ORDER 

2.10.1. DEPENDENT VARIABLE MISSING 

 If the dependent variable y is missing from our differential equation, we make the substitution 

𝑦′ = 𝑝. This entails 𝑦′′ = 𝑝′. Thus, the differential equation is reduced to first order. 

2.10.2. INDEPENDENT VARIABLE MISSING 

 If the variable x is missing from our differential equation, we make the substitution 𝑦′ = 𝑝. 

This time the corresponding substitution for 𝑦′′ will be a bit different. To wit, 

𝑦′′ =
𝑑𝑝

𝑑𝑥
=

𝑑𝑝

𝑑𝑦

𝑑𝑦

𝑑𝑥
=

𝑑𝑝

𝑑𝑦
∙ 𝑝 

This change of variable will reduce our differential equation to first order. In the reduced equation, we 

treat 𝑝 as the dependent variable (or function) and y as the independent variable. 

2.11. SECOND ORDER LINEAR DIFFERENTIAL EQUATION 

 An equation is said to be second-order differential equation with constant coefficients if it has 

the form 

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑑 

Where a, b, c, d are constants 

2.12. THE METHOD OF UNDETERMINED COEFFICIENTS 

 The method of undetermined coefficients is an approach to finding a particular solution to 

certain nonhomogeneous ordinary differential equations and recurrence relations. 

2.13. THE METHOD OF VARIATION OF PARAMETERS 

 Variation of parameters is a method for producing a particular solution to a nonhomogeneous 

equation by exploiting the solutions to the associated homogeneous equation. 
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CHAPTER- 3 

APPLICATIONS OF FIRST ORDER DIFFERENTIAL EQUATIONS 

3.1. NEWTON’S LAW OF COOLING 

Under certain conditions, the temperature rate of change of a body is proportional to the 

difference between the temperature T of the body and the temperature T0 of the surrounding medium. 

This is known as Newton’s Law of Cooling. Here, we shall consider the case in which T0 remains 

constant and also suppose that heat flows rapidly enough that the temperature T of the body is the same 

at all points of the body at a given time t 

If T= f(t) denotes the temperature of the body at time t, then f satisfies the differential equation  

𝑑𝑇

𝑑𝑡
= 𝑘(𝑇 − 𝑇0)                                     (1) 

Where k < 0, This equation can be solved by separating the variables 

𝑑𝑇

𝑇 − 𝑇0
 =  𝑘 𝑑𝑡 

Integrating both sides, 

Log(𝑇 − 𝑇0)  =  𝑘𝑡 +  𝐶 

 

𝑇 − 𝑇0  =  𝑒𝑘𝑡 +𝐶  =  𝑒𝑘𝑡 · 𝑒𝐶  =  𝐶 · 𝑒𝑘𝑡 

 

𝑇 − 𝑇0  =  𝑐𝑒𝑘𝑡𝑇 =  𝑇0  +  𝑐𝑒𝑘𝑡, 𝑘 < 0, 𝑇 > 𝑇0 

 

 
                                                      Newton’s law of cooling 
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3.1.1. PROBLEM 

 A body whose temperature T is initially 2000C is immersed in a liquid when temperature T0 is 

constantly 1000C. If the temperature of the body is 1500C at t = 1 minute, what is its temperature at t 

= 2 minutes? 

SOLUTION  

Separating the variables in Eq. (1), we get 

𝑑𝑇

𝑇 − 100
 =  𝑘𝑑𝑡 

And the solution is  

                                   log(𝑇 − 100)  =  𝑘𝑡 +  𝐶                               (2) 

When t = 0, T = 200, we find that C = log 100. Also, at t = 1, T = 150 and  

Eq. (2) gives 

                                                    log 50 =  𝑘(1) +  𝑙𝑜𝑔 100         

Or 

                                               𝑘 =  − log(2)        

 

Now, substituting C = log 100 and k = − log(2)in Eq. (2), we obtain 

                                     

                                           Log(𝑇 − 𝑇0)  =  −𝑡 log(2)  +  log(100) 

Or 

𝑇 =  100[1 + 2−𝑡] 

Thus, at t = 2min, T = 1250C. 

Remark: 

Consider Eq. (1) which has a solution of the form  

                                           log(𝑇 − 𝑇0)  =  𝑘𝑡 +  log(𝐶) 

Or         
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𝑇 =  𝑇0  +  𝑐𝑒𝑘𝑡 

Now as 𝑡 → ∞, then 𝑇 → 𝑇0 and consequently, 

𝑑𝑇

𝑑𝑡
 =  𝑘(𝑇 − 𝑇0) → 0 

That is, as t becomes large, the difference between temperature of the body and the temperature of the 

surrounding medium approaches zero, and the rate at which the body cools also approach zero. 

 

3.2. FALLING OBJECT 

An object is dropped from a height at time t = 0. If ℎ (𝑡) is the height of the object at time t, 

a(t) the acceleration and 𝜈(𝑡) the velocity. 

The relationships between a, 𝜈 and h are as follows:   

𝑎 (𝑡)  =  
𝑑𝜈

𝑑𝑡
  , 𝑣 (𝑡)  =  

𝑑ℎ

𝑑𝑡
 

For a falling object 𝑎 (𝑡) is constant and is equal to g = −9.8 𝑚/𝑠 

Combining the above differential equations, we can easily deduce the following equation 

𝑑2ℎ 

𝑑2𝑡
 =  𝑔 

Integrate both sides of the above equation to obtain             

𝑑ℎ

𝑑𝑡
 =  𝑔𝑡 + 𝑣0 

Integrate one more time to obtain  

                                            ℎ(𝑡)  =  
1

2
𝑔𝑡2  +  𝑣0 𝑡 +  ℎ0             

The above equation describes the height of a falling object, from an initial height ℎ0 at an initial 

velocity 𝑣0, as a function time. 
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3.2.1 PROBLEM 

An object falling in a vacuum subject to a constant gravitational force accelerates at a constant rate. If 

the object were to be dropped from rest and to attain a velocity of 5m/s after one second, how fast 

would it be travelling after five seconds? 

SOLUTION               

Let 𝑣 (𝑡) be the velocity at time t seconds measured in meters per seconds. Then we know that  

𝑣 (0)  =  0, that 𝑣 (1 )  =  5, and that 𝑣′′ =  0 (the acceleration, the rate of change of velocity, so v’, 

is a constant) 

Integrating the equation  𝑣′′ =  0 with respect to t, we see that 

𝑣′ (𝑡)  −  𝑣′(0)  = 0 

Thus, if 𝑐1  =  𝑣′ (0), we have  𝑣 (𝑡)  =  𝑐1 

Integrating again, we see that,  

𝑣(𝑡)  −  𝑣(0)  =  𝑐1 𝑡 

Setting 𝑐2  =  𝑣 (0), we have 𝑣 (𝑡)  =  𝑐2  + 𝑐1 𝑡 

Evaluating at 0 and 1, we have, 

                           0 =  𝑣 (0)  =  𝑐2  + 𝑐1(0)  =  𝑐2 

And                    5 =  𝑣 (1)  =  𝑐2  +  𝑐1(1)  =  0 + 𝑐1  =  𝑐1 

Thus, 𝑣 (𝑡)  =  5𝑡 so that 𝑣 (5)  =  25 

 

3.3. POPULATION GROWTH AND DECAY 

When a population grows exponentially, it grows at a rate that is proportional to its size at any 

time t. 

Let 𝑝 (𝑡) be the number of individuals in a population at time t. The population will change with 

time t = 0 

                                                      𝑃 (0) =  𝑃0 
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Indeed, the rate of change of p will be due to births and deaths. 

Rate of change of P = Rate of births – Rate of deaths 

Assume that all individuals are identical in the population, and that average per capita birth rate, r, 

and that the average per capita mortality rate, m are some fixed positive constants 

Then the total number of births into the population in year t is rp, and the total number of deaths out 

of the population in year t is mp. The rate of change of population as a whole is given by the 

derivative 
𝑑𝑝

𝑑𝑡
  

Thus,  

𝑑𝑝

𝑑𝑡
= 𝑟𝑃 − 𝑚𝑃 = (𝑟 − 𝑚)𝑃 = 𝑘𝑃, 𝑤ℎ𝑒𝑟𝑒 𝑘 = (𝑟 − 𝑚) 

This means that the population satisfies a differential equation of the form 

𝑑𝑝

𝑑𝑡
= 𝑘𝑝 

(1) 

provided k is the so-called “not growth rate”, 

That is, the birth rate minus mortality rate and is a constant  

i.e.  

𝑘 =  
1

𝑝
·

𝑑𝑝

𝑑𝑡
 

From (1) 

We can solve equation (1) using separation of variables 

i.e.  

𝑑𝑝

𝑝
 =  𝑘 𝑑𝑡 

Integrating both sides 

∫
𝑑𝑝

𝑝
 =  ∫ 𝑘 𝑑𝑡 

Ln | 𝑝 | =  𝑘𝑡 +  𝐶 

Taking exponential 

𝑒ln | 𝑝 |  =  𝑒𝑘𝑡  + 𝑐 
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| 𝑝 |  =  𝑒𝑘𝑡 · 𝑒𝐶 

𝑝 (𝑡)  =  𝐴𝑒𝑘𝑡 

Using absolute value definition and by replacing constant with A 

                            𝑃 (𝑡)  =  𝐴𝑒𝑘𝑡  

Which is the general solution of the differential equation 

Using initial condition 𝑃 (0)  =  𝑃0, we can find the particular solution 

𝑃0  =  𝑃(0)  =  𝐴𝑒𝑘·0 

𝑃0  =  𝐴 · 1 

𝑃0  =  𝐴 

Hence, 𝑃(𝑡)  =  𝑃0 𝑒
𝑘𝑡 is a particular solution; 

Where, P0 = initial population at time t = 0, 

 k = relative growth rate that is constant, 

  t = the time the population grows, 

 𝑃(𝑡)  = what the population grows to after time t 

 

The graph of the exponential equation 𝑃(𝑡)  =  𝑃0 𝑒
𝑘𝑡 has the general form 
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3.3.1 PROBLEM 

The population of a community is known to increase at a rate proportional to the number of people 

present at a time t. If the population has doubled in 6 years, how long will it take to triple? 

SOLUTION 

Let P denote the population at time t. Let 𝑃(𝑡) denote the initial population (population at t = 0) 

The solution of the model 

𝑑𝑝

𝑑𝑡
 =  𝑘𝑃 is 

𝑃 =  𝐴𝑒𝑘𝑡, where 𝐴 =  𝑃0 by given data 

𝐴𝑒6𝑘  =  𝑃 (6)  =  2 𝑃 (0)  =  2𝐴 

Or 

𝑒6𝑘  =  2 or  𝐾 =  
1

6
 

Find t when 𝑃 (𝑡) =  3𝐴 =  3 𝑃(0) 

Or 

𝑃 (0)𝑒𝑘𝑡  =  3 𝑃(0) 

3 =  𝑒(
1
6

)ln(2)𝑡
 

Or 

ln(3)  =  
ln(2)𝑡

6
 

Or 

𝑡 =
 6 ln(3)

ln(2)
= 9.6 years approximate. 

 

3.4. MIXTURE PROBLEM 

Consider a tank containing G0 gallons of solution in which P0 lb of a substance S is dissolved. 

A second solution flows into the tank at a given rate r1 gal/min, this solution containing P1 lb/gal of S. 



 

16 
 

Finally, the mixture in the tank flows out at a given rate r2 gal/min. Find out the number of pounds P 

of S in the tank at time t > 0. 

Assume that the mixture in the tank is well-stirred, so that at any given time 𝑡𝑘, 𝑃 (𝑡)  =  𝑃 (𝑡𝑘) 

has the same value at each point in the tank. The rate at which P changes with time t is 

𝑑𝑝

𝑑𝑡
 =  (𝑟𝑎𝑡𝑒 𝑆 𝑓𝑙𝑜𝑤𝑖𝑛)  −  (𝑟𝑎𝑡𝑒 𝑆 𝑓𝑙𝑜𝑤𝑜𝑢𝑡)                         (1) 

Equation (1) is called equation of continuity. It states that the mass of the quantity S is conserved. i.e., 

no amount of S is created or destroyed in the process. 

The rate at which S flows into the tank is 𝑃1𝑟1 lb/min. The rate at which S flows out in the tank 

is [𝑃/𝐺(𝑡)]𝑟2 lb/min., where [𝑃/𝐺(𝑡)] is the concentration of S in the tank at the time t; 𝐺(𝑡) is the 

number of gallons in the tank at time t. If 𝑟1  =  𝑟2, 𝐺(𝑡) will have the constant value 𝐺0(𝑡). Many 

interesting cases arise, each leading to a different differential equation, e.g., either 𝑟1  𝑜𝑟 𝑟2 maybe 

zero, 𝑃0 𝑜𝑟 𝑃1 ma be zero and so on 

3.4.1. PROBLEM 

A tank contains 100 gallons of brine in which 10lb of salt are dissolved. Brine containing 2 lb salt per 

gallon flows into the tank at 5 gal/min. If the well-stirred mixture is drawn off at 4 gal/min., find: (a) 

the amount of the salt in the tank at time t, and (b) the amount of the salt in the tank at t = 10 min. 

SOLUTION 

Let 𝑃 (𝑡) denote the number of pounds of salt in the tank and 𝐺 (𝑡) the number of gallons of brine at 

time t. Then 𝐺 (𝑡) = 100 + 𝑡. Also, 𝑃 (0) = 10 and 𝐺 (0) = 100 since 5(2) = 10 lb salt is added to 

the tank per minute and [𝑃 (100 +  𝑡)⁄ ](4) lb salt per minute is extracted from the tank, P then 

satisfies the differential equation 

                                   
𝑑𝑃

𝑑𝑡
 =  10 −

 4𝑃

100 + 𝑡
                                           (2) 

Equation (2) can be written as 

𝑑𝑃

𝑑𝑡
 +

4𝑃

100 +  𝑡
 =  10 

Which is a linear equation and the solution is  

𝑃(100 +  𝑡)4  =  ∫ 10(100 +  4)4𝑑𝑡 =  2(100 +  𝑡)5  +  𝐶 

Putting t = 0 and P = 10, we get c = −190(100)4. Thus 
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(a)  𝑃(𝑡)  =  2(100 +  𝑡)  −  190(100)4(100 +  𝑡)−4 

(b) 𝑃(10)  =  2(100 + 10)  −  190(100)4  +  (100 +  10)−4  =  90.2 𝑙𝑏 

 

3.5. ELECTRIC CIRCUITS 

Let a series circuit contain only a resistor and an inductor as shown in the fig. 

 

By Kirchhoff’s second law the sum of the voltage drop across the inductor ( 𝐿 
𝑑𝑖

𝑑𝑡
 ) and the 

voltage drop across the resistor (𝑖𝑅) is the same as the impressed voltage (𝐸(𝑡)) on the circuit. Current 

at time 𝑡, 𝑖(𝑡), is the solution of the differential equation 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝐸(𝑡) (1) 

Where L and R are constants known as the inductance and the resistance respectively. 

 

The voltage drop across a capacitor with capacitance C is given by q(t)/C, where q is the charge 

on the capacitor. Hence, for the series circuit shown in Fig. we get the following equation by applying 

Kirchhoff’s second law: 

𝑅𝑖 +
1

𝑐
𝑞 = 𝐸(𝑡) (2) 

RC Series Circuit 

LR Series Circuit 
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Since 𝑖 =
𝑑𝑞

𝑑𝑡
, Eq. (2) can be written as 

𝑅
𝑑𝑞

𝑑𝑡
+

1

𝑐
𝑞 = 𝐸(𝑡) (3) 

 

3.5.1. PROBLEM 

Find the current in a series RL circuit in which the resistance, inductance, and voltage are constant. 

Assume that 𝑖(0) = 0 i.e., initial current is zero. 

SOLUTION 

It is modelled by Eq. (1) 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝐸(𝑡) 

Or  𝑑𝑖

𝑑𝑡
+

𝑅

𝐿
𝑖 =

𝐸(𝑡)

𝐿
 (4) 

Since L, R and E are constants, 

Equation (4) is a linear differential equation of first order in 𝑖 with integrating factor 

𝑒∫
𝑅
𝐿

𝑑𝑡 = 𝑒𝑅𝑡/𝐿 

The solution of Eq. (4) is 

𝑖(𝑡)𝑒
𝑅𝑡
𝐿 = ∫

𝐸

𝐿
𝑒𝑅𝑡/𝐿 𝑑𝑡 

𝑖(𝑡)𝑒
𝑅
𝐿

𝑡 =
𝐸

𝐿
𝑒𝑅𝑡/𝐿

𝐿

𝑅
+ 𝑐 

Or 𝑖(𝑡) =
𝐸

𝑅
+ 𝑐𝑒−

𝑅
𝐿

𝑡
 (5) 

since 𝑖(0) = 0, 𝑐 = −
𝐸

𝑅
  

Putting this value of 𝑐 in Eq. (5) we get 

𝑖(𝑡) =
𝐸

𝑅
(1 − 𝑒−

𝑅
𝐿

𝑡) 
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3.6. SPREAD OF EPIDEMICS 

An important problem in biology and medicine deals with the occurrence spreading and control 

of a contagious disease, i.e., one which can be transmitted from one individual to another.  The science 

that deals with this study is called epidemiology, and if a large number of population gets the disease, 

we say that there is epidemic. 

 

To have a simple mathematical description for the spread of a disease suppose that there is a 

large but finite population. Let us restrict ourselves to the students in some large college or university, 

who remain on campus for a relatively long period and do not have excess to other communities. We 

presuppose that there are only two types of students, those who have a contagious disease (called 

infected), and those who do not have the disease, (i.e., unaffected) but are capable of contracting it on 

exposure to an infected student. If there are some infected students initially, then we want to find a 

formula for the number of infected students at any time. 

Let 𝑁𝑖 denote the number of infected students at any time 𝑡 and 𝑁𝑢 the uninfected students. 

Then, if N is the total number of students (assumed to be constant), we have 

𝑁 = 𝑁𝑖 + 𝑁𝑢 (1) 

Here, 𝑑𝑁𝑖/𝑑𝑡 is the time rate of change in the number of infected students and should depend in some 

way on 𝑁𝑖, and thus 𝑁𝑢. Assuming that 𝑑𝑁𝑖/𝑑𝑡 is the quadratic function of 𝑁𝑖 as an approximation, 

we get 

𝑑𝑁𝑖

𝑑𝑡
= 𝑎0 + 𝑎1𝑁𝑖 + 𝑎2𝑁2

𝑖 (2) 

 

where 𝑎0, 𝑎1, 𝑎2 are constants. Now we would expect 
𝑑𝑁𝑖

𝑑𝑡
= 0, where𝑁𝑖 = 0, i.e., there are no infected 

students and where 𝑁𝑖 = 𝑁, i.e., all students are infected. Then from Eq. (2), we have 
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𝑎0 = 0          and          𝑎1𝑁 + 𝑎2𝑁2 = 0          or          𝑎2 = −𝑎1/𝑁 

So that Eq. (2) becomes 

𝑑𝑁𝑖

𝑑𝑡
= 𝑎1𝑁𝑖 −

𝑎1𝑁𝑖
2

𝑁
=

𝑎1

𝑁
𝑁𝑖(𝑁 − 𝑁𝑖) 

 = 𝑘𝑁𝑖(𝑁 − 𝑁𝑖) 

where 𝑘 = 𝑎1/𝑁 and the initial conditions are 

𝑁𝑖 = 𝑁0          at           𝑡 = 0 

The Eq. (3) and (4) has the solution as  

𝑁𝑖 =
𝑁

1 + (
𝑁
𝑁0

− 1) 𝑒−𝑘𝑁𝑡
 (5) 

The graph of Eq. (5) is the logistic curve. From the shape of the logistic curve, we see that initially 

there is a gradual increase in the number of infected students, followed by a rather sharp rise in their 

number near the infected point, and finally a tapering off. The limiting case occurs where all students 

become infected, as seen by Eq. (5). That 𝑁𝑖 → 𝑁 as 𝑡 → ∞. 

 

3.6.1. PROBLEM 

Spread of flu virus. A student carrying a flu virus returns to an isolated college hostel of 1000 

students. If it is assumed that the rate at which the virus spreads is proportional not only to the number 

𝑁𝑖 of infected students but also to the students not infected. Find the number of infected students after 

6 days when it is further observed that after 4 days 𝑁𝑖(4) = 50. 

SOLUTION 

Assuming that no one leaves the hostel throughout the duration of the duration of the disease, 

we must then solve the initial value problem 

𝑑𝑁𝑖

𝑑𝑡
= 𝑘𝑁𝑖(𝑁 − 𝑁𝑖)          𝑁(0) = 1 = 𝑘𝑁𝑖(1000 − 𝑁𝑖), 

We have, from Eq. (5) 

𝑁𝑖 = 𝑁(𝑡) =
1000

1 + 999𝑒−1000𝑘𝑡
 (6) 

Now, using 𝑁𝑖 = 𝑁(4) = 50, we can determine k. 
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50 =
1000

1 + 999𝑒−1000𝑘 × 4
 

Or 

𝑒−4000𝑘 =
19

999
 

 

Or 

𝑘 = 0.0009906 

Thus, Eq. (6) becomes 

𝑁𝑖 = 𝑁(𝑡) =
1000

1 + 999𝑒−0.0009906𝑡
 

Or 

𝑁𝑖 = 𝑁(6) =
1000

1+999𝑒−5.9436 = 276 students 

 

 

 

3.7. DYNAMICS OF TUMOUR GROWTH 

It has been observed experimentally that free-living dividing cells, such as bacteria cells, grow 

at a rate proportional to the volume of dividing cells at that moment. 

Let 𝑉(𝑡) denote the volume of the dividing cells at the time 𝑡. Then 

𝑑𝑉

𝑑𝑡
= 𝑘𝑉 (1) 

 for some positive constant k. The solution of Eq. (1) is 

𝑉(𝑡) = 𝑉0𝑒𝑘(𝑡−𝑡0) (2) 

Where 𝑉0 is the volume of dividing cells at time 𝑡0 (initial time). Thus, free-living dividing cells grow 

exponentially with time, whereas solid tumours do not grow exponentially with time. As the tumour 

becomes larger, the doubling time of the total tumour volume continuously increases. Almost a 

thousand-fold increase in tumour volume, by the equation 
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𝑉(𝑡) = 𝑉0 𝑒𝑥𝑝 [
𝑘

𝑎
(1 − 𝑒−𝑎𝑡)] (3) 

Where 𝑘 and 𝑎 are positive constants. 

Equation (3) is usually known as a Gompertzian relation. It states that tumour grows more and 

more slowly with the passage of time, and that it ultimately approaches the limiting volume 𝑉0𝑒𝑘/𝑎. 

An insight into this problem can be gained by finding a differential equation satisfied by 𝑉(𝑡). 

Differentiation of Eq. (3) yields 

𝑑𝑉

𝑑𝑡
= 𝑉0𝑘𝑒−𝑎𝑡𝑒[

𝑘
𝑎

(1−𝑒−𝑎𝑡)] = 𝑘𝑒−𝑎𝑡𝑉 (4) 

 

Equation (4) can also be arranged as 

𝑑𝑉

𝑑𝑡
= (𝑘𝑒−𝑎𝑡)𝑉 

 

(4a) 

𝑑𝑉

𝑑𝑡
= 𝑘(𝑒−𝑎𝑡𝑉) (4b) 

With these arrangements of Eq. (4), two theories have been evolved for the dynamics of tumour 

growth. According to the first theory, the retarding effect of tumour growth is due to an increase in the 

mean generation time of the cells, without a change in the proportion of the reproducing cells. As time 

goes on, the reproducing cells mature or age, and thus divide more slowly. This theory corresponds to 

Eq. (4a). On the other hand, the second theory corresponding to Eq. (4b) is the mean generation time 

of the dividing cells remains constant, and the retardation of growth is due to a loss in reproductive 

cells in the tumour. 

Possible explanation for this is that a necrotic region develops in the center of the tumour. This 

necrosis appears at a critical size for a particular type of tumour, and thereafter the necrotic “core” 

increases rapidly as the total tumour mass increases. According to this theory a necrotic core develops 

because in many tumours the supply of blood, and thus of oxygen and nutrients, is almost confined to 

the surface of the tumour and a short distance beneath it. As the tumour grows, the supply of oxygen 

to the central core by diffusion becomes more and more difficult resulting in the formation of a necrotic 

core. 
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3.8. DRUG DISTRIBUTION (CONCENTRATION) IN HUMAN BODY 

To combat the infection to a human body, appropriate dose of medicine is essential. Because 

the amount of the drug in the human body decreases with time, medicine must be given in multiple 

doses. The rate at which the level y of the drug in a patient’s drug decays can be modeled by the decay 

equation 

𝑑𝑦

𝑑𝑡
= −𝑘𝑦 

Where k is a constant to be experimentally determined for each drug. If initially, i.e., at t = 0 a patient 

is given an initial dose 𝑦𝑝, then the drug level l at any time t is the solution of the above differential 

equations. i.e. 

𝑦(𝑡) = 𝑦𝑝𝑒−𝑘𝑡 

Remark: 

In this model it is assumed that the ingested drug is absorbed immediately, which is not usually the 

case. However, the time of absorption is small compared with the time between doses. 

3.8.1. PROBLEM 

A representative of a pharmaceutical company recommends that a new drug of his company be given 

every T hours in doses of quantity 𝑦0, for an extended period of time. Find the steady state drug in the 

patient’s body. 

 

 

SOLUTION 

Since the initial dose is 𝑦0, the drug concentration at any time t ≥ 0 is found by the equation 𝑦 =

𝑦0𝑒−𝑘𝑡, the solution of the equation dy/dt = -ky. 

At t = T the second dose of 𝑦0 is taken, which increases the drug level to  

𝑦(𝑇) = 𝑦0 + 𝑦0𝑒−𝑘𝑇 = 𝑦0(1 + 𝑒−𝑘𝑇) 

 The drug level immediately begins to decay. To find its mathematical expression we solve the 

initial-value problem: 

𝑑𝑦

𝑑𝑡
= −𝑘𝑦 
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𝑦(𝑇) = 𝑦0(1 + 𝑒−𝑘𝑇) 

Solving this initial-value problem we get 

𝑦 = 𝑦0(1 + 𝑒−𝑘𝑇)𝑒−𝑘(𝑡−𝑇) 

This equation gives the drug level for t > T. The third dose of 𝑦0 is to be taken at 𝑡 = 2𝑇 and the drug 

just before this dose is taken is given by 

𝑦 = 𝑦0(1 + 𝑒−𝑘𝑇)𝑒−𝑘(2𝑇−𝑇) = 𝑦0(1 + 𝑒−𝑘𝑇)𝑒−𝑘𝑇 

The dosage 𝑦0 taken at t = 2T raises the drug level to 

𝑦(2𝑇) = 𝑦0 + 𝑦0(1 + 𝑒−𝑘𝑇)𝑒−𝑘𝑇 = 𝑦0(1 + 𝑒−𝑘𝑇 + 𝑒−2𝑘𝑇) 

Continuing in this way, we find after (n+1)th dose is the sum of the first n+1 terms of a geometric 

series, with first term as 𝑦0 and the common ratio 𝑒−𝑘𝑇. This sum can be written as 

𝑦(𝑛𝑇) =
𝑦0(1 − 𝑒−(𝑛+1))

1 − 𝑒−𝑘𝑇
 

As n becomes large, the drug level approaches a steady-state value, say 𝑦𝑠 given by 

𝑦𝑠 = lim
𝑛→∞

𝑦(𝑛𝑇) 

  =
𝑦0

1 − 𝑒−𝑘𝑇
 

The steady-state value 𝑦𝑠 is called the saturation level of the drug. 
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CHAPTER- 4 

APPLICATIONS OF SECOND ORDER DIFFERENTIAL 

EQUATIONS 

 

4.1. RLC CIRCUIT 

         The electric circuit with current 𝐼 in amperes satisfies the differential equation 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 = 𝐸(𝑡) 

The figure shown contains an additional element known as capacitor. This type of element stores 

electrical energy in the circuit. 

    

The voltage drop across a capacitor is proportional to the charge q (in coulombs) on the capacitor and 

is given by 𝐶−1𝑞 , where 𝐶−1 is the constant of proportionality. The constant 𝐶 is called the constant 

of capacitance or simply capacitance. Apply Kirchhoff 's law to fig., we get the differential equation 

 
𝐿

𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 +

1

𝐶
𝑞 = 𝐸(𝑡) (5) 

The current 𝐼 equals the time rate of change of 𝑞, i.e. 

 
𝐼(𝑡) =  

𝑑𝑞(𝑡)

𝑑𝑡
 (6) 

From Eqs. (1) and (2) 

 
𝐿

𝑑2𝑞

𝑑𝑡2
+ 𝑅

𝑑𝑞

𝑑𝑡
+

1

𝐶
𝑞 = 𝐸(𝑡) (7) 

Differentiating both sides of Eq. (1) w.r.t. 𝐼 and using Eq. (2), we obtain 

 
𝐿

𝑑2𝐼

𝑑𝑡2
+ 𝑅

𝑑𝐼

𝑑𝑡
+

1

𝐶
𝐼 =

𝑑

𝑑𝑡
𝐸(𝑡) (8) 

Circuit diagram consisting of a capacitor C, a 

resistor R and an inductor L 
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We assume here that 𝐿 (H), 𝑅 (Ω) and 𝐶 (F) are constants and 𝐸(𝑡) (V) is the impressed voltage and 

𝑡 (s) is the time. 

 

4.1.1. PROBLEM 

A series circuit contains only a capacitor and inductor. If the capacitor has an initial charge 𝑞0, 

determine the subsequent charge 𝑞(𝑡). 

SOLUTION 

Form Eq. (3), 

𝐿
𝑑2𝑞

𝑑𝑡2
+

1

𝐶
𝑞 = 0 

and the given initial conditions are 𝑞(0) = 𝑞0. Assume that no current flows initially; then 𝑞′(0) = 0, 

since 𝑞′(𝑡) = 𝐼(𝑡). The general solution is, thus 

𝑞(𝑡) = 𝑐1 cos
1

√𝐿𝐶
𝑡 + 𝐶2 sin

1

√𝐿𝐶
𝑡 

The initial conditions imply that 𝑐1 = 𝑞0 and 𝑐2 = 0, so that 

𝑞(𝑡) = 𝑞0 cos
1

√𝐿𝐶
𝑡 

 

4.2. DAMPED SPRING MASS SYSTEM 

        Enumerating the forces acts upon the mass. Forces tending to pull the mass downward are 

positive, while those tending to pull it upward are negative. The forces are: 

1. 𝐹1, the force of gravity, of magnitude 𝑚𝑔, where 𝑔 is the acceleration due to gravity. Since this 

act in the downward direction, it is positive, and so 

𝐹1 = 𝑚𝑔 (1) 

2. 𝐹2, the restoring force of the spring. Since 𝑥 + 𝑙 is the total amount of elongation, by Hook's 

law the magnitude of this force is 𝑘(𝑥 + 𝑙). When the mass is below the end of the unstretched 

spring, this force acts in the upward direction and so is negative. Also, for the mass in such a 



 

27 
 

position, 𝑥 + 𝑙 is positive. Thus, when the mass is below the end of the unstretched spring, the 

restoring force is given by 

 

𝐹2 = −𝑘(𝑥 + 𝑙) 

     

 (2) 

This also gives the restoring force when the mass is above the end of the unstretched spring. 

When the mass is at rest in its equilibrium position the restoring force 𝐹2 is equal in magnitude 

but opposite in direction to the force of gravity and so is given by −𝑚𝑔. Since in this position 

𝑥 = 0, Equation (2) gives 

−𝑚𝑔 = −𝑘(0 + 𝑙) 

or 

𝑚𝑔 = 𝑘𝑙 

Replacing 𝑘𝑙 by 𝑚𝑔 in Equation (2) we see that the restoring force can thus be written as 

𝐹2 = −𝑘𝑥 − 𝑚𝑔 (3) 

3. 𝐹3, the resisting force of the medium, called the damping force. Although the magnitude of this 

force is not known exactly, it is known that for small velocities it is approximately proportional 

to the magnitude of the velocity: 

|𝐹3| = 𝑎 |
𝑑𝑥

𝑑𝑡
|      (4) 

Where a > 0 is called the damping constant. When the mass is moving downward, 𝐹3 acts in 

the upward direction (opposite to that of the motion) and so 𝐹3 < 0. Also, since 𝑚 is moving 

downward, 𝑥 is increasing and 
𝑑𝑥

𝑑𝑡
 is positive. Thus, assuming Equation (4) to hold, when the 

mass is moving downward, the damping force is given by 

𝐹3 = −𝑎
𝑑𝑥

𝑑𝑡
     (a > 0)      (5) 

This also gives the damping force when the mass is moving upward. 

4. 𝐹4, any external impressed forces that act upon the mass. Let us denote the resultant of all such 

external forces at time 𝑡 simply by 𝐹(𝑡) and write 

𝐹4 = 𝐹(𝑡)      (6) 

   We now apply Newton's second law, 𝐹 = 𝑚𝑎, where 𝐹 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4. Using (1), (3), 

(5), and (6), we find 

𝑚
𝑑2𝑥

𝑑𝑡2
= 𝑚𝑔 − 𝑘𝑥 − 𝑚𝑔 − 𝑎

𝑑𝑥

𝑑𝑡
+ 𝐹(𝑡)      (7) 

or 
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𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑎

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹(𝑡)      (8) 

This we take as the differential equation for the motion of the mass on the spring. Observe that it is a 

nonhomogeneous second-order linear differential equation with constant coefficients. If 𝑎 = 0 the 

motion is called undamped; otherwise, it is called damped. If there are no external impressed forces, 

𝐹(𝑡) = 0 for all 𝑡 and the motion is called free; otherwise, it is called forced. 

 

4.3. SIMPLE HARMONIC MOTION 

The motion of a particle moving in a straight line is described by the following differential equation: 

𝐹 ( 𝑡 , 𝑥 ,
𝑑𝑥

𝑑𝑡
 ,

𝑑2𝑥

𝑑𝑡2
 ) = 0    (1) 

The general solution of Eq. (1) contains two arbitrary constants, which can be obtained from the initial 

conditions 

𝑡 = 0,          𝑥 = 𝑥0,          𝑡 = 𝑏,          
𝑑𝑥

𝑑𝑡
= 𝑣0 (2) 

The resulting particular solution is given by the displacement function 𝑥 = ℎ(𝑡). The domain of ℎ is 

the time interval. The differential Eq. (1) and the initial conditions (2) furnish a mathematical model 

for the physical situation. 

 

4.3.1. PROBLEM 

A particle moves on the 𝑥-axis with an acceleration 𝑎 = 6𝑡 − 4 ft/𝑠2. Find the position and velocity 

of the particle at 𝑡 = 3, if the particle is at origin and has a velocity 10 ft/s when 𝑡 = 0. 

SOLUTION 

Here, at 𝑡 = 0, 𝑥 = 0, 𝑣 = 10. 

Now, 

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2
= 6𝑡 − 4 

which gives 

𝑣 = 3𝑡2 − 4𝑡 + 𝑐1 
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And thus 𝑐1 = 10. Also  

              𝑣 =
𝑑𝑥

𝑑𝑡
= 3𝑡2 − 4𝑡 + 10 (1) 

Which on integration yields 

𝑥 = 𝑡3 − 2𝑡2 + 10𝑡 + 𝑐2 

From the initial conditions, 𝑐2 = 0. Thus  

𝑥 = 𝑡3 − 2𝑡2 + 10𝑡 (2) 

Putting 𝑡 = 3 in Eqs. (1) and (2), we get 

(𝑣)𝑡=3 = 25 ft/s,      (𝑥)𝑡=3 = 39 ft 

 

4.4. SIMPLE PENDULUM 

        A simple pendulum consists of a particle of weights W (bob) supported by a straight rod or piece 

of string of length 𝑙. The particle is free to oscillate in a vertical plane; the mass of the particle is 

assumed to be concentrated at a point; and the weight of the rod is assumed to be negligible. 

       Let 0 be the fixed point and 𝐴 be the position of the bob initially. 

 

If 𝑃 is the position of the bob at any time 𝑡, such that 𝑎𝑟𝑐 𝐴𝑃 = 𝑠 and ∠𝐴𝑂𝑃 = 𝜃, then 𝑠 = 𝑙𝜃. 

Now, the equation of motion along 𝑃𝑇 is 

𝑚
𝑑2𝑠

𝑑𝑡2
= −𝑚𝑔 sin 𝜃 
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Or 

𝑑2(𝑙𝜃)

𝑑𝑡2
+ 𝑔 sin 𝜃 = 0 

Or 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
sin 𝜃 = 0 

Or 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
(𝜃 −

𝜃3

3!
+ ⋯ ) = 0 

Or 

𝑑2𝜃

𝑑𝑡2 +
𝑔

𝑙
𝜃 = 0 (For a first approx.) 

The auxiliary equation has the roots ±√𝑔/𝑙, and the solution is 

𝜃 = 𝑐1 cos √
𝑔

𝑙
𝑡 + 𝑐2 sin √

𝑔

𝑙
𝑡 

Therefore, the motion of a pendulum is simple harmonic and the time of an oscillation is 2𝜋√𝑙/𝑔. 

        The movement of the bob from one end to the other constitutes half an oscillation and is known 

as a beat or a swing. The time of one beat is 𝜋√𝑙/𝑔. 

 

4.4.1. PROBLEM 

A simple pendulum of length 𝑙 is oscillating through a small angle 𝜃 in a medium for which the 

resistance is proportional to the velocity. Obtain the differential equation of its motion and discuss the 

motion. 

SOLUTION 

The equation of motion along the tangent PT is 

𝑚
𝑑2𝑠

𝑑𝑡2
= −𝑚𝑔 sin 𝜃 − 𝜆

𝑑𝑠

𝑑𝑡
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Where 𝜆 is a constant, or 

𝑑2𝜃

𝑑𝑡2
+ 𝑔 sin 𝜃 +

𝜆

𝑚

𝑑

𝑑𝑡
(𝑙𝜃) = 0 

Replace sin 𝜃 by 𝜃 (as 𝜃 is small) and put 
𝜆

𝑚
= 2𝑘, to obtain 

𝑑2𝜃

𝑑𝑡2
+ 2𝑘

𝑑𝜃

𝑑𝑡
+

𝑔𝜃

𝑙
= 0 

Which is the required differential equation. 

         The auxiliary equation has the roots −𝑘 ± √𝑊2 − 𝑘2, where 𝑊 = 𝑔/𝑙. The oscillatory motion 

of the bob is possible only when 𝑘 < 𝑊. The solution of the present differential equation is 

𝜃 = 𝑒−𝑘𝑡 (𝑐1 cos √𝑊2 − 𝑘2𝑡 + 𝑐2 sin √𝑊2 − 𝑘2𝑡) 

Which gives the vibratory motion of period 2𝜋/√𝑊2 − 𝑘2 . 
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CHAPTER-5 

 

CONCLUSION 

 

Differential equations play major role in applications of sciences and engineering. 

it arises in wide variety of engineering applications for e.g., electromagnetic theory, 

signal processing, computational fluid dynamics, etc. These equations can be typically 

solved using either analytical or numerical methods. Since many of the differential 

equations arising in real life application cannot be solved analytically or we can say that 

their analytical solution does not exist. 

Here in this book, we have started with the fundamental concept of differential 

equation, some real-life applications where the problem is arising and explanation of 

some existing methods for their solution. We have given a basic presentation of 

application of differential equations. We have learned about various application in real 

life and in mathematics along with its definition and its types.  
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