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ABSTRACT

The Project Report on “Representation Theory of Finite Groups” consist of

six chapters.

The first chapter helps us to recollect the basic definitions and examples

about Groups and Homomorphisms. The Kernel of a Homomorphism is also

discussed here.

The second chapter focuses on Linear Algrbra. The definitions and examples

on Vector spaces and about Linear Transformations are explained here.

The concept about Group Represention is described in the third chapter. Here

the title of the project is been introduced and it also provides us with some

examples ,definition and theorems based on this topic.

In  chapter 4 , we try to understand the concept of representation of Groups

by using Linear Algebra. Here we study about FG Modules which will help

us to understand the Representation Theory in more depth. It makes our

study more easier.

Chapter 5 tells about FG submodules and irreducibility.

Finally the last chapter concludes the project by introducing the concept of

Group Algebra. By defining Group Algebra of G it helps us to construct an

important faithful representation of G known as the Regular representation

of G.

In these chapters , we consider Group G as a Finite Group and V as a vector

space over F, where F is either R or C .
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INTRODUCTION

Representation theory is concerned with the ways of writing a group as a

group of matrices . Otherwise we can simply say that it is a study of groups

as a matrices. An attractive feature of representation theory is that it

combines the main two strands of mathematics namely Group Theory and

Linear Algebra. Not only about its beautiful theory , but it also provides one

of the keys for a proper understanding of finite groups. For example , it is

important to a concrete description about a particular group ; this is achieved

by finding a representation of the group as a group of matrices. Moreover by

studing the different representations of the group it is possible to prove

results which lie outside the frame work of representation theory.

Infact, the range of applications of the theory extends far beyond the

boundaries of pure mathematics and includes theoretical physics and

chemistry.
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CHAPTER 1

GROUPS AND HOMOMORPHISMS

GROUPS

1.1  Definition

A  Group   <G, > is a set G, closed under a binary operation ,such that* *

→ For all a,b,c G, we have ∈

; Associativity of𝑎 * 𝑏( ) * 𝑐 = 𝑎 * (𝑏 * 𝑐) *

→ There is an element e in G such that for all x G ∈

; Identity element for𝑒 * 𝑥 = 𝑥 * 𝑒 = 𝑥 *

→ Corresponding to each element a G, there is an element in G such ∈ 𝑎'

that

; Inverse of a𝑎 * 𝑎' = 𝑎' * 𝑎 = 𝑒 𝑎'

Note

If the number of elements in G is finite ,then we call G as a Finite Group.

The number of elements in a Group G is called as the order of G and is

denoted  by   𝐺| |

1.2   Examples

1) Let n be a positive integer. Let C denote the set of all complex numbers.

The set of roots of unity in C, under usual multiplication of complex 𝑛𝑡ℎ
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numbers, forms a group of order n. It is written as and is called as the𝐶
𝑛

Cyclic Group of order n. If a = then𝑒
2π𝑖

𝑛

and𝐶
𝑛

= 1, 𝑎, 𝑎2,   ….  𝑎𝑛−1{ } 𝑎𝑛 = 1

2)  Let n be an integer with n 3, and consider the rotation and reflection≥

symmetries of a regular n-sided polygon. There are n rotation symmetries:

these are , . . . , where is the (clockwise) rotation about the   ρ
0

ρ
1

ρ
𝑛−1

ρ
𝑘

centre O through an angle .2π𝑘/𝑛

There are also n reflection symmetries: these are reflections in the n

lines passing through O and a corner or the mid-point of a side of the

polygon.

These 2n rotations and reflections forms a group under the product

operation of composition .This group is called the dihedral group of order

2n, and is written 𝐷
2𝑛

Let A be a corner of the polygon. Write ‘b’ for the reflection in the line

through O and A, and write ‘a’  for the rotation . Then the n rotations are ρ
1

1, a, ,. . . . . .  ,𝑎2 𝑎𝑛−1

(where 1 denotes the identity, which leaves the polygon fixed) and the

n reflections are

b, ab, b, . . . .  , b𝑎2 𝑎𝑛−1

Thus all elements of are products of powers of a and b𝐷
2𝑛
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that is,

is generated by a  and  b.𝐷
2𝑛

 

The relations determine the product𝑎𝑛 = 1 ,  𝑏 2 = 1  𝑎𝑛𝑑 𝑏−1𝑎𝑏 = 𝑎−1

of any two elements of this group.  We summarize all this in the presentation

       𝐷
2𝑛

=< 𝑎, 𝑏:  𝑎𝑛 = 1 ,  𝑏 2 = 1  ,  𝑏−1𝑎𝑏 = 𝑎−1 >

3)  Let n be a positive integer. The set of all permutations of ,1, 2, 3,  …, 𝑛{ }

under composition is a group called Symmetric Group, written as .the  𝑆
𝑛

order of is n!  𝑆
𝑛

4)  Let F be either R or C. The set of all invertible matrices with𝑛×𝑛

entries from F forms a group under matrix multiplication known as the

General Linear Group of degree n over F. It is denoted as GL (n, F).It is an

infinite group.The identity element of this group is the identity  matrix

denoted by .𝐼
𝑛

Note

A group G is said to be abelian  if  gh=hg    for all   g and h   in  G.

HOMOMORPHISMS

Given two groups G and H, those functions from G to H which preserve the

group structure are called Homomorphism.

1.3  Definition
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If G and H are groups, then a homomorphism from G to H is a function

such thatθ: 𝐺→𝐻

θ 𝑔
1
𝑔

2( ) = θ 𝑔
1( ). θ 𝑔

2( )     ∀  𝑔
1
 ,  𝑔

2
  ∈𝐺

Note

An invertible homomorphism is called an isomorphism .If there is an

isomorphism from G to H then G and H are said to be isomorphic and we

write   𝐺=
~

𝐻

1.4   Example

Let   𝐺 =  𝐷
2𝑛

=< 𝑎, 𝑏:  𝑎𝑛 = 1 ,  𝑏 2 = 1  ,  𝑏−1𝑎𝑏 = 𝑎−1 >

write the 2n elements of G in the form

𝑎𝑖𝑏𝑗; 0≤𝑖≤𝑛 − 1 𝑎𝑛𝑑  0≤𝑗≤1

Let H be any group and suppose that H contains elements x and y which

satisfy 𝑥𝑛 =  𝑦 2 = 1  ,  𝑦−1𝑥𝑦 = 𝑥−1

Then defined by is a homomorphism.θ: 𝐺→𝐻 θ 𝑎𝑖𝑏𝑗( ) = 𝑥𝑖𝑦𝑗

Proof

Suppose that       0≤𝑟≤𝑛 − 1 𝑎𝑛𝑑  0≤𝑠≤1

0≤𝑡≤𝑛 − 1 𝑎𝑛𝑑  0≤𝑢≤1
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Then for some i and j with𝑎𝑟𝑏𝑠𝑎𝑡𝑏𝑢 = 𝑎𝑖𝑏𝑗
0≤𝑖≤𝑛 − 1,   0≤𝑗≤1

Moreover i and j are determined by repeatedly using the relations

           𝑎𝑛 𝑏2 = 1 ,  𝑏−1𝑎𝑏 = 𝑎−1

Since we have we can also deduce that𝑥𝑛 =  𝑦 2 = 1  ,  𝑦−1𝑥𝑦 = 𝑥−1

𝑥𝑟𝑦𝑠𝑥𝑡𝑦𝑢 = 𝑥𝑖𝑦𝑗

= =∴ θ 𝑎𝑟𝑏𝑠𝑎𝑡𝑏𝑢( ) = θ 𝑎𝑖𝑏𝑗 ( ) =  𝑥𝑖𝑦𝑗 𝑥𝑟𝑦𝑠𝑥𝑡𝑦𝑢 θ 𝑎𝑟𝑏𝑠( ). θ(𝑎𝑡𝑏𝑢)∎

Kernels

Let G and H be groups and suppose that : G → H is a homomorphism.  θ

We define the kernel of by Ker = where 1 θ θ   𝑔∈𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 θ 𝑔( ) = 1 { }

is taken as the identity element in H.  Here Image of is denoted as  Im .θ θ

Note:

→Ker is a normal subgroup of G.θ

→Im is a subgroup of Hθ 

1.5   Theorem
Suppose that G and H are groups and let : G H be a homomorphism.θ →

Then G/Ker Imθ =
~

θ

Group Action

1.6   Definition
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Let X be a set and  let G be a group. An action of G on X is a map

*  : G X→X such that×

1. ex=x

2. 𝑔
1
𝑔

2( ) 𝑥( ) = 𝑔
1

𝑔
2
𝑥( )   ∀ 𝑥∈𝑋 𝑎𝑛𝑑 ∀𝑔

1
, 𝑔

2
 ∈𝐺

Under these conditions X is said to be a G-set.
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CHAPTER 2

VECTOR SPACES AND LINEAR

TRANSFORMATIONS

Vector spaces

2.1  Definition
Let F be either R (the set of real numbers) or C (the set of complex

numbers). A vector space over F is a set V, together with a rule for adding

any two elements u, v of V to form an element u + v of V, and a rule for

multiplying any element v of V by any element λ of F to form an element λv

of V. (The latter rule is called scalar multiplication.) Moreover, these rules

must satisfy:

(a)   V is an abelian group under addition;

(b)   for all u, v in V and all λ , μ in F,

(1)   λ(u +v) = λu + λv,

(2)   (λ + μ)v = λv + μv,

(3)   (λμ)v =λ(μv),

(4)   1v =v.

The elements of V are called vectors, and those of F are called scalars.

We write 0 for the identity element of the abelian group V under addition.

2.2 Example
For each positive integer n,  consider row vectors  𝑥

1
, 𝑥

2
, …… 𝑥

𝑛( )
where belongs  to F. We denote the set of all such row𝑥

1
, 𝑥

2
, …….. 𝑥

𝑛

vectors by .  Define addition and scalar multiplication on by  𝐹𝑛   𝐹𝑛 

𝑥
1
, 𝑥

2
, …… 𝑥

𝑛( ) + 𝑥
1
' , 𝑥

2
' , ……, 𝑥

𝑛
'( ) = 𝑥

1
+ 𝑥

1
' , 𝑥

2
+ 𝑥

2
' …. 𝑥

𝑛
+ 𝑥

𝑛
'( )
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λ 𝑥
1
, 𝑥

2
, …. 𝑥

𝑛( )   =  λ𝑥
1
, λ𝑥

2
, …. λ𝑥

𝑛( )
Then is a vector space over F.  𝐹𝑛

Bases of  vector spaces

Let be vectors in a vector space V over F. A vector v in V  𝑣
1
, 𝑣

2
, …𝑣

𝑛 
  

is a linear combination of if𝑣
1
, 𝑣

2
, …𝑣

𝑛 
 

v = for some in  F.λ
1
𝑣

1
+ λ

2
𝑣

2
+ … + λ

𝑛
𝑣

𝑛 
λ

1
, λ

2
, ….. λ

𝑛

The vectors are said to  span V if every vector in V is a linear𝑣
1
, 𝑣

2
, …𝑣

𝑛 
 

combination of 𝑣
1
, 𝑣

2
, …𝑣

𝑛 
 .

We say that are linearly dependent if𝑣
1
, 𝑣

2
, …𝑣

𝑛 
 

=0 for some in F not all of which     λ
1
𝑣

1
+ λ

2
𝑣

2
+ … + λ

𝑛
𝑣

𝑛 
λ

1
, λ

2
, ….. λ

𝑛

are zero; otherwise are linearly independent.𝑣
1
, 𝑣

2
, …𝑣

𝑛 

2.3 Definition
The vectors form a basis of V if they span V and are𝑣

1
, 𝑣

2
, …𝑣

𝑛 
   

linearly independent.

The number of vectors in a basis of  a vector space V is called as  the

dimension of V and is denoted as dim V. If V = {0} then dim V = 0. The

vector space V is n-dimensional if dim V = n

2.4 Example
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Let V = . Then  𝐹𝑛

(1, 0, 0, ……… 0), (0, 1, 0, ……… , 0), ……… , (0, 0, 0, ………, 1)

is a basis of V, so dim V = n.

Another basis is

(1, 0, 0, ………, 0), (1, 1, 0, ………, 0),……… , (1, 1, 1, ……… , 1)

Linear  Transformations

2.5  Definition

Let V and W be vector spaces over F. A linear transformation from V to W

is a function θ: V → W which satisfies

→θ(u + v)=  θ(u)  +θ( v)              for all u, v V , and∈

→θ(λv)= λ.θ(v)                            for all  λ F and v V∈ ∈

Endomorphisms

2.6  Definition

A linear transformation from a vector space V to itself is called an

endomorphism of V.

Example: Identity Function defined on a vector space.

Matrices

Let V be a vector space over F, and let θ be an endomorphism of V.

Suppose that is a basis of V and denote  it as B . Then there 𝑣
1
, 𝑣

2
, …𝑣

𝑛 
   

are  scalars in F  (1 < i < n, 1 < j < n) such that for all i,𝑎
𝑖𝑗

 θ 𝑣
𝑖( ) = 𝑎

𝑖1
𝑣

1
+ … + 𝑎

𝑖𝑛
𝑣

𝑛
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2.7 Definition

The  n n matrix ( ) is called the matrix of θ  relative to the basis B, and is× 𝑎
𝑖𝑗

denoted by θ[ ]
𝐵

2.8 Examples

(1) If   θ= (so that θ(v) = v for all v V), then = for all bases B1
𝑣

∈ θ[ ]
𝐵

𝐼
𝑛

of V, where denotes the n n identity matrix.𝐼
𝑛

×

(2) Let V = and let θ be the endomorphism (x, y)→ (x + y, x -2 y) of V. If𝑅2

B is the basis (1, 0), (0, 1) of V and is the basis (1, 0), (1, 1) of V, then𝐵'

= =θ[ ]
𝐵

1 1 1 − 2 ( ) θ[ ]
𝐵' 0 1 3 − 1  ( )

Note

If A is an n n matrix over F, then the function v →vA   (v ) is an× ∈ 𝐹𝑛

endomorphism of where A is matrix over F𝐹𝑛

2.9Definition
Let B= be a basis  of the vector space V, and let 𝑣

1
, 𝑣

2
, …𝑣

𝑛 { } 

be a basis of V. Then for 1 i n,𝐵' = 𝑣
1
' 𝑣

2
' ……𝑣

𝑛
'{ } ≤ ≤
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for certain scalars . The  n n matrix  T = (    𝑣
𝑖
' = 𝑡

𝑖1
𝑣

1
+ … + 𝑡

𝑖𝑛
𝑣

𝑛
𝑡

𝑖𝑗
×

is invertible, and is called the change of basis matrix from B to𝑡
𝑖𝑗

) 𝐵'

The inverse of T is the change of basis matrix from to B .𝐵'

2.10 Definition

If B and are bases of V and φ is an endomorphism of V  𝐵'

then T , where T is the change of basis matrix from B to   [ φ]
𝐵

= 𝑇−1 [ φ]
𝐵'

. 𝐵'
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CHAPTER 3

GROUP REPRESENTATION

In this chapter, we will focus on visualizing a group G as a group of matrices

which we call as representation of G. We will give some examples of some

representations and also introduce the concept about of representations. We

will also discuss about the Kernel of a representation.

REPRESENTATIONS

Let G be a group. Let F be R or C. Remember that, GL(n,F) means the group

of invertible n n matrices with entries taken from F.×

3.1 Definition

A representation of G over F is a homomorphism ρ from G to GL (n, F), for

some n.  The degree of ρ is the integer n. Thus if ρ is a function from G to

GL(n, F), then ρ is a representation if and only if    

ρ 𝑔ℎ( ) = ρ 𝑔( ). ρ ℎ( )   ∀ 𝑔 ,  ℎ ∈𝐺

Since a representation is a homomorphism, it follows that for every

representation ρ: G →GL (n, F), we have

ρ1= and𝐼
𝑛

ρ( = G𝑔−1) (ρ(𝑔))−1 ∀  𝑔 ϵ 

where denotes the n n identity matrix.𝐼
𝑛
  ×

3.2  Result

Every group has representations of arbitrarily large degree.
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Proof:

Let G be any group. Define ρ: G → GL (n, F) by

= G,ρ 𝑔( ) 𝐼
𝑛 

  ∀ 𝑔 ∈

where is the n n identity matrix, Then𝐼 
𝑛

×

= = . =ρ 𝑔ℎ( ) 𝐼 
𝑛

𝐼
𝑛

𝐼
𝑛 

ρ 𝑔( ). ρ ℎ( )   ∀ 𝑔 ,  ℎ ∈𝐺

so ρ is a representation of G.∎

3.3 Example

Let G be the dihedral group = <a, b: = =1, ab = >𝐷
8

𝑎4 𝑏2   𝑏−1 𝑎−1

Define   A = and B = where A, B GL(2,F) 0 1 − 1 0 ( ) 1 0 0 − 1 ( )  ϵ 

such that = =I, AB=𝐴4 𝐵2     𝐵−1 𝐴−1

It follows (see Example 1.4) that the function : G GL (2, F) defined byρ →   

( ) = ; ( ) ( ) is a homomorphism.ρ 𝑎𝑖𝑏𝑗  𝐴𝑖𝐵𝑗 0≤𝑖≤3 0≤𝑗≤1

is a representation of over F. The degree of is 2.∴ ρ 𝐷
8
  ρ 

The matrices of all elements  in are given below:ρ 𝑔( )   𝐷
8 

1 0 0 1 ( )     0 1 − 1 0 ( )     − 1 0 0 − 1 ( )    0 − 1 1 0 ( )    1 0 0 − 1 ( )   0 − 1 −(

=1 =a = = =b =ab𝑔   𝑔 𝑔 𝑎2 𝑔 𝑎3 𝑔 𝑔

20



− 1 0 0 1 ( )    0 1 1 0 ( )                                                                              

= =𝑔 𝑎2𝑏 𝑔 𝑎3 𝑏

Equivalent Representations

Now we discuss a way for converting a given representation into another

one.

Let : G GL (n, F) be a representation of G over F. Let T be an invertibleρ →

n n matrix over F. For all n n matrices A and B, we have× ×

( AT )( BT ) = (AB)T𝑇−1 𝑇−1 𝑇−1

This observation can be used to produce a new representation from .σ     ρ

We define ,

= T G:σ(𝑔) 𝑇−1(ρ 𝑔( )) ∀  𝑔  ϵ 

To prove that is a representation of G over Fσ

,   ∀ 𝑔 ,  ℎ ∈𝐺

(by definition of )σ 𝑔ℎ( ) = 𝑇−1 ρ 𝑔ℎ( )( ) 𝑇   σ

= (since is a homomorphism)𝑇−1(ρ(𝑔)ρ(ℎ))𝑇 ρ

=𝑇−1 ρ 𝑔( )( )𝑇. 𝑇−1(ρ(ℎ))𝑇

= . σ 𝑔( )  σ ℎ( )

is a representation.∴ σ ∎

3.4  Definition
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Let : G GL (m, F) and : G GL (n, F) be representations of  Gρ →  σ →

over F. We say that is equivalent to if n = m and  there  exists  an ρ  σ

invertible n n matrix T such that×

= T Gσ(𝑔) 𝑇−1(ρ 𝑔( )) ∀  𝑔  ϵ 

Note

For all representations of  G  over F,  we  haveρ, σ 𝑎𝑛𝑑 τ

→ is equivalent to ρ ρ

→ If is equivalent to then is equivalent to .ρ σ  σ ρ

→ if is equivalent to and is equivalent to , then is ρ  σ  σ τ   ρ

equivalent to . τ

ie,   Equivalence of representations is an equivalence relation

3.6 Examples

(1) Let G = = <a, b: = =1, ab = > , and consider the𝐷
8

𝑎4 𝑏2   𝑏−1 𝑎−1

representation  ρ  of G which appears in  Example 3.3 . Thus ρ(a)=A and

ρ(b)=B   where,

A= and    B=0 1 − 1 0 ( ) 1 0 0 − 1 ( )

Assume that F =C, and define   T  = .Then =   1
√2 1 1 𝑖 − 𝑖 ( ) 𝑇−1 

  1
√2 1 − 𝑖 1 𝑖 ( )

T  has been constructed so that AT is  diagonal.  𝑇−1

We have,∴ 𝑇−1𝐴𝑇 = 𝑖 0 0 − 𝑖 ( ) 𝑎𝑛𝑑 𝑇−1𝐵𝑇 = 0 1 1 0 ( )
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and so we obtain a representation of for whichσ  𝐷
8  

σ(a) = ,        σ(b) = 𝑖 0 0 − 𝑖 ( )  0 1 1 0 ( )

The representations ρ and σ are equivalent.

(2) Let G = ,= and    Let , A=𝐶
2 

< 𝑎: 𝑎2 = 1 > − 5 12 − 2 5 ( )

Here Hence ρ:1→I, a→A is a representation of G.𝐴2 = 𝐼.

If  T= then2 − 3 1 − 1 ( ) 𝑇−1𝐴𝑇 = 1 0 0 − 1 ( )

and  so we obtain a representation σ of G  for  which

σ(1)= and σ(a)= and σ is equivalent to ρ.1 0 0 1 ( )  1 0 0 − 1 ( )

Note: There are two easily recognized situations where the only

representation which is equivalent to ρ is ρ itself ;   they are

→when the degree of  ρ is 1,

→ when ρ 𝑔( ) = 𝐼
𝑛   

  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑔   𝑖𝑛  𝐺.  

Kernels of representations

We conclude this chapter with a discussion about the kernel of a

representation ρ: G →GL (n, F). By definition it consists of elements of G

for which ρ (g) is the identity matrix. Thus

Ker( ρ)= 𝑔∈𝐺: ρ 𝑔( ) = 𝐼
𝑛{ }

Note that Ker (ρ) is a normal subgroup of G.

It can be shown that the kernel of a representation is the whole of G,
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which  is given by the following definition.

3.8 Definition
The representation ρ: G →GL (1, F) which is defined by  ρ(g)=(1) g G,∀  ∈

is called the trivial representation of G.

In other words we can say that the trivial representation of G is  the

representation where every group element is mapped to the 1 1  identity×

matrix.

3.9 Definition
A representation ρ: G → GL (n, F) is said to be faithful if

Ker (ρ) = ie, if the identity element of G is the only element g1{ }

for which ρ(g) = 𝐼
𝑛

3.10 Proposition

A representation  ρ  of a finite group G is faithful if and only if  Im (ρ)  is

isomorphic to G.

Proof

We know that Ker (ρ) is a normal subgroup of  G and by Theorem the factor

group  G/ Ker ρ  is isomorphic to Im ρ. Therefore, if Ker ρ = then1{ }

G Im ρ. Conversely, if  G Im ρ, then these two groups have same order, =
~

=
~

 

and so = 1; that is, ρ is faithful𝐾𝑒𝑟 ρ| |  ∎
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3.11 Examples
1) The representation ρ  of given by 𝐷

8
           

  ρ 𝑎𝑖𝑏𝑗( ) = 0 1 − 1 0 ( )𝑖 1 0 0 − 1 ( )𝑗

is faithful, since the identity is the only element g which satisfies ρ(g) = I.

The group generated by the matrices  0 1 − 1 0 ( ) 𝑎𝑛𝑑 1 0 0 − 1 ( )

is therefore isomorphic to  𝐷
8

2)  Since AT = if and only if A = it follows that all𝑇−1 𝐼
𝑛  

𝐼
𝑛

representations which are equivalent to a faithful representation are

faithful.

3) The trivial representation of a group G if faithful if and only if

G = 1{ }

Note:

→Every finite group has a faithful representation.

→A representation is faithful if it is injective
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CHAPTER 4

FG MODULES

This chapter gives us an introduction to FG -modules. We study this because

there is a close connection between FG -modules and representation of G.

Consider a group G. Let F be R or C. Suppose that ρ:G→GL(n,F) is a

representation  of G. Consider a vector space V= consisting of all row𝐹𝑛

vectors ( ) with . Define a matrix product for all v V and gλ
1
, λ

2
, ….. λ

𝑛
λ

𝑖
∈𝐹 ∈

G  as   v.ρ(g).∈

Note

→The matrix product defined above is a row vector in V

→Since  ρ is a homomorphism we have v.ρ(gh)=v.(ρ(g).ρ(h)) v V , g,h G∀ ∈ ∈

→Since ρ(1) is the identity matrix , we have v. ρ(1)=v v V∀ ∈

→By properties of matrix multiplication , we have

(λv)(ρ(g))=λ(v.ρ(g))

( u+v)(ρ(g))=u(ρ(g))+v(ρ(g)) u,v V,  λ F, g G∀ ∈ ∈ ∈

4.1 Example

Let G = =  <a, b: = =1, ab = >  and let ρ: G → GL (2, F) be𝐷
8

𝑎4 𝑏2   𝑏−1 𝑎−1

the representation of G over F given in Example 3.3.

Thus ρ(a)= and ρ(b)= . If v=( ) F,then we0 1 − 1 0  ( ) 1 0 0 − 1  ( ) λ
1
, λ

2
∈

have
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v. ρ(a)=(−  λ
2
, λ

1
)

v. ρ(b)=( λ
1
, − λ

2
)

4.2  Definition

Let V be a vector space over F and let G be a group. Then V is an

FG-module if a multiplication v. g (v V, g G) is defined, satisfying∈ ∈

the following conditions for all u, v V, λ F and g, h G:∈ ∈ ∈

(1) v g V∈

(2) v( gh) = (v g)h

(3) v1 = v

(4) (λv) g =λ(v g)

(5) (u + v) g = ug + v g

We use the letters F and G in the name `FG-module' to indicate

that V is a vector space over F and that G is the group from which we

are taking the elements g to form the products v g (v V).∈

Note that conditions (1), (4) and (5) in the definition ensure that for

all g G, the function v → v g (v V ) is an endomorphism of V.∈ ∈

4.3  Definition

Let V be an FG-module, and let B be a basis of V. For each g G,∈

let denote the matrix of the endomorphism v → v g of V, relative to[ 𝑔]
𝐵

the   basis B .

The connection between FG-modules and representations of G over

F is revealed in the following basic result.
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4.4 Theorem

(1)   If ρ: G → GL(n, F) is a representation of G over F, and V =𝐹𝑛

then V becomes an FG-module if we define the multiplication  v g  by

v g = v( g) (v V , g G):ρ ∈ ∈

Moreover, there is a basis B of V such that  ρg = for all g G:[ 𝑔]
𝐵

  ∈

(2)   Assume that V is an FG-module and let B be a basis of V.

Then the function ,g → ( g G)  is a representation of G over F[ 𝑔]
𝐵

∈

Proof

(1)

We have already observed that for all u, v , λ F and g, h G, we∈ 𝐹𝑛 ∈ ∈

have,

→  v( ρg) ∈ 𝐹𝑛

→  v(ρ( gh)) = (v( ρg))(ρh),

→  v(ρ1) = v,

→  (λv)( ρg) = λ(v( ρg)

→  (u + v)( ρg) = u( ρg) + v( ρg):

Therefore, becomes an FG-module if we define v g = v( ρg) v , g𝐹𝑛 ∀ ∈ 𝐹𝑛

G∈

Moreover, if we let B be the basis (1, 0, 0, … , 0),(0, 1, 0, … , 0), ..,(0, 0, 0,

…. , 1)  of , then     ρg = for all g G𝐹𝑛 [ 𝑔]
𝐵

  ∈
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(2)   Let V be an FG-module with basis B . Since v( gh) = (v g)h for all

g, h G and all v in the basis B of V, it follows that∈

                            [ 𝑔ℎ]
𝐵

= [ 𝑔]
𝐵

[ ℎ]
𝐵

In particular,

for all g G. Now v1= v for all v V, so is                       [ 1]
𝐵=

[ 𝑔]
𝐵  

[ 𝑔−1]
𝐵

∈ ∈

the identity matrix. [ 1]
𝐵

    𝑖𝑠 

Therefore each matrix is invertible (with inverse ). [ 𝑔]
𝐵  

   [ 𝑔−1]
𝐵   

We have proved that the function g → is a homomorphism from G to[ 𝑔]
𝐵  

GL (n, F) (where n = dim V), and hence is a representation of G over F.∎

4.5 Example

Let  G = =  < a, b: = =1, ab = >  and let ρ  be the𝐷
8

𝑎4 𝑏2   𝑏−1 𝑎−1

representation of G over F given in Example 3.3, so we have

ρ(a)= ,   ρ(b)=0 1 − 1 0 ( ) 1 0 0 − 1 ( )

Write V = .  By Theorem 4.4(1), V becomes an FG-module if we𝐹2

define   v g =v( ρg) (v V , g G).∈ ∈

For instance,

a = =1, 0( )    1, 0( ) 0 1 − 1 0 ( )   (0, 1)
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If is the basis (1, 0), (0, 1) of V, then we have  𝑣
1
, 𝑣

2
  

a = , b = ,                               𝑣
1

𝑣
2

              𝑣
1

𝑣
1

a = , b =                               𝑣
2

− 𝑣
1

           𝑣
2

𝑣
2
    

If B denotes the basis , then the representation g → ( g G)𝑣
1
, 𝑣

2
[ 𝑔]

𝐵  
∈

is just the representation ρ (see Theorem 4.4(1) again).

4.6 Proposition

Assume that is a basis of a vector space V over F. Suppose that𝑣
1
, 𝑣

2
, …𝑣

𝑛 
 

we have a multiplication  v g  for all v in V and g in G which  satisfies the

following conditions for all i with 1 i n, for all g, h G, and for all≤ ≤ ∈

F:  λ
1
, λ

2
, ….. λ

𝑛
∈

(1) g V𝑣
𝑖

∈

(2) ( gh) = ( g)h𝑣
𝑖

𝑣
𝑖

(3) 1 =𝑣
𝑖

𝑣
𝑖

(4) ( +. . . + ) g = ( g) + . . . + ( g).λ
1
𝑣

1
λ

𝑛
𝑣

𝑛
λ

1
𝑣

1
λ

𝑛
𝑣

𝑛

Then V is an FG-module.

Proof

It is clear from (3) and (4) that v1 = v for all v V. Conditions (1) and (4)∈

ensure that for all g in G, the function v → v g (v V) is an endomorphism∈
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of V. That is,

v g V ,∈

(λv) g =λ(v g),

(u + v) g = ug + v g, for all u, v V, λ F and g G.∈ ∈ ∈

Hence      ( +…+ )h = ( h) +. . . + ( h) (4.61)          forλ
1

𝑢
1

λ
𝑛

𝑢
𝑛

λ
1

𝑢
1

λ
𝑛

𝑢
𝑛

all F, all V and all h G.  λ
1
, λ

2
, ….. λ

𝑛
∈   𝑢

1
, 𝑢

2
, ….. 𝑢

𝑛
 ∈ ∈

Now let v V and g, h G. Then v = +. . . + for some∈ ∈ λ
1
𝑣

1
λ

𝑛
𝑣

𝑛

F, and  λ
1
, λ

2
, ….. λ

𝑛
∈

v( gh) = ( ( gh)) + . . .  + ( ( gh))     by condition (4)  λ
1

𝑣
1

λ
𝑛

𝑣
𝑛 

= (( g)h) + . . . + (( g)h)       by condition (2)  λ
1

𝑣
1

λ
𝑛

𝑣
𝑛 

=  ( ( g) +. . . + ( g))h            by (4.61)  λ
1

𝑣
1

λ
𝑛

𝑣
𝑛 

=  (v g)h                                                    by condition (4)

We now have  checked all the axioms which are required for V to be

an FG-module.

Hence V is an FG-module    ∎

4.7 Definition
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(1) The trivial FG-module is the 1-dimensional vector space V over F with

v g = v for all v V , g G ∈ ∈

(2) An FG-module V is faithful if the identity element of G is the only

element g for which v g = v for all v V∈

For instance, the F -module which appears in Example 4.5 is faithful𝐷
8

FG-modules and Equivalent Representations

We conclude this chapter with a discussion about the relationship between

FG-modules and equivalent representations of  G over F. An  FG-module

gives us many representations for G, all of the form g → ( g G) for[ 𝑔]
𝐵  

∈

some basis B of V.

The next result shows that all these representations are equivalent to each

other (see Definition 3.4) and moreover,

any two equivalent representations of G arise from some FG-module

4.8 Theorem
Suppose that V is an FG-module with basis B , and let ρ be the

representation of G over F defined by ρ: g → ( g G)[ 𝑔]
𝐵  

∈

(1)   If is a basis of V, then the representation φ: g → ( g G)𝐵' [ 𝑔]
𝐵'  

∈

of G is equivalent to ρ.
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(2) If σ is a representation of G which is equivalent to ρ, then there is a basis

of   V such that𝐵''

σ: g → ( g G):[ 𝑔]
𝐵''  

∈

Proof

(1)

Let T be the change of basis matrix from B to (see Definition 2.9).𝐵'

Then by (2.10), for all g G, we have T.  Therefore φ is∈ [ 𝑔]
𝐵

= 𝑇−1 [ 𝑔]
𝐵'

equivalent to ρ.

(2)

Suppose that  ρ  and σ are equivalent representations of G. Then

for some invertible matrix T, we have

ρ g  = ( σg)T  for all g G.𝑇−1 ∈

Let be the basis of V such that the change of basis matrix from B to is𝐵 '' 𝐵 ''

T. Then for all g G, T, and so  σ g = ∈ [ 𝑔]
𝐵

= 𝑇−1 [ 𝑔]
𝐵 '' 

[ 𝑔]
𝐵 '' 

∎

4.9 Example

Again let G = = There is a representation ρ of G which𝐶
3

< 𝑎:  𝑎3 = 1 >.

is given by

ρ(1)= ρ(a) , ρ =1 0 0 1 ( ) = 0 1 − 1 − 1 ( ) (𝑎2) − 1 − 1 1 0 ( )
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If V is a 2-dimensional vector space over C, with basis then we𝐵 = 𝑣
1
, 𝑣

2

can turn V into a CG-module as in Theorem 4.4(1) by defining

1 = , a = , =𝑣
1

𝑣
1

        𝑣
1

𝑣
2

𝑣
1

𝑎2 − 𝑣
1

− 𝑣
2

1 = , a = , = :𝑣
2

𝑣
2

        𝑣
2

− 𝑣
1

− 𝑣
2

        𝑣
2

𝑎2 𝑣
1

Then we  have

= = =                         1[ ]
𝐵

1 0 0 1 ( ) [ 𝑎 ]
𝐵

0 1 − 1 − 1 ( ) [ 𝑎2]
𝐵

− 1 − 1 1 0 ( )

Now let = and = + . Then , is another basis of V,𝑢
1

𝑣
1

𝑢
2

𝑣
1

𝑣
2

 𝑢
1

𝑢
2

which we call . Since𝐵'

1 = , a = + , = ,𝑢
1

𝑢
1

𝑢
1

− 𝑢
1

𝑢
2

𝑢
1

𝑎2 − 𝑢
2

1 = , a = , = ,𝑢
2

𝑢
2

𝑢
2

− 𝑢
1

𝑢
2

𝑎2 𝑢
1

− 𝑢
2

we obtain the representation φ: g → where[ 𝑔]
𝐵'

= = =          1[ ]
𝐵' 1 0 0 1 ( ) [ 𝑎 ]

𝐵' − 1 1 − 1 0 ( ) [ 𝑎2]
𝐵'

0 − 1 1 − 1 ( )
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Note that if    T= then for all g in G, we have T1 0 1 1 ( ) [ 𝑔]
𝐵

= 𝑇−1 [ 𝑔]
𝐵'

and so ρ and φ are equivalent, in agreement with Theorem 4.8(1)

35



CHAPTER 5

FG SUBMODULES AND IRREDUCIBILITY

We begin the study of FG-modules by introducing the basic building

blocks of the theory - the irreducible FG-modules. First we require

the notion of an FG-sub module of an FG-module. Throughout, G is a group

and F is R or C.

FG -Submodules

5.1 Definition
Let V be an FG-module. A subset W of V is said to be an  FG- submodule of

V if W is a subspace and  wg W for all w W and all g G.∈ ∈ ∈

Thus an FG-submodule of V is a subspace which is also an FG-module.

5.2 Example
For every FG-module V, the zero subspace and V itself, are 0{ }

FG-submodules of V.

Irreducible FG-modules

5.3 Definition
An FG-module V is said to be irreducible if it is non-zero and it has no FG

submodules apart from {0} and V.
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If V has an FG-submodule W with W not equal to {0} or V, then V is

reducible.

Similarly, a representation ρ: G → GL (n, F) is irreducible if the

corresponding FG-module given by𝐹𝑛

v g = v( ρg)    (v , g G)∈ 𝐹𝑛 ∈

(see Theorem 4.4(1)) is irreducible; and ρ is reducible if is reducible.𝐹𝑛

Suppose that V is a reducible FG-module, so that there is an FG-

submodule W with 0 <dim W < dim V. Take a basis of W and extend it𝐵 
1

to a basis B of V. Then for all g in G, the matrix has the form[ 𝑔]
𝐵

(5.31 )𝑋
𝑔
 0 𝑌

𝑔
 𝑍

𝑔
 ( )

for some matrices , and , where is k k (k =dim W).𝑋
𝑔

𝑌
𝑔

𝑍
𝑔

𝑋
𝑔

×

A representation of degree n is reducible if and only if it is equivalent to a

representation of the form (5.31), where is k k and𝑋
𝑔

×

0 < k < n.

Notice that in (5.31), the functions g → and g → are representations of𝑋
𝑔

𝑍
𝑔

G: to see this, let g, h G and multiply the matrices and given by∈ [ 𝑔]
𝐵

[ ℎ]
𝐵

(5.31).

Notice also that if V is reducible then dim V 2≥

5.4 Example

Let  G = and let V = be the 2-dimensional FG-module described in𝐷
8

𝐹2

Example 4.5(1). Thus G = <a, b>, and for all (λ, μ) V  we have∈
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(λ, μ) a =(-μ,λ),    (λ, μ) b = (λ, -μ)

We claim that V is an irreducible FG-module. To see this, suppose that there

is an FG-submodule U which is not equal to V. Then dim U 1, so≤

U = sp (( )) for some F. As U is an FG-module, ( )b is a scalarα, β α, β ∈ α, β

multiple of ( ), and hence either =0α, β α

or = 0. Since  ( )a  is also a scalar multiple of ( ), this forcesβ α, β α, β

= 0, so U ={0}. Consequently V is irreducible, as claimed.α = β
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Chapter 6

Group Algebras

The group algebra of a finite group G is a vector space of dimension |G|

which also carries extra structure involving the product operation on G. In a

sense, group algebras are the source of all you need to know about

representation theory. In particular, the ultimate goal of representation theory

-  that of understanding all the representations of finite groups  would be

achieved if group algebras could be fully analysed. Group algebras are

therefore of great interest. After defining the group algebra of G, we shall

use it to construct an important faithful representation, known as the regular

representation of G

The Group Algebra of  G

Let G be a finite group whose elements are , . . . , , and let F be R or C.𝑔
1

𝑔
𝑛

We define a vector space over F with , . . . , as a basis, and we call this𝑔
1

𝑔
𝑛

vector space  as FG. Take as the elements of FG as expressions of the form

: λ
1
𝑔

1
+ λ

2
𝑔

2
+ … λ

𝑛
𝑔

𝑛
 (𝑎𝑙𝑙 λ

𝑖
 ∈𝐹)

The rules for addition and scalar multiplication in FG are the natural

ones: namely, if

u= and   v=
𝑖=0

𝑛

∑ λ
𝑖
𝑔

𝑖
𝑖=0

𝑛

∑ µ
𝑖
𝑔

𝑖

are elements of FG, and  λ,μ F, then∈
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u +v = and    λu =
𝑖=0

𝑛

∑ (λ
𝑖

+ µ
𝑖
) 𝑔

𝑖
𝑖=0

𝑛

∑ (λλ
𝑖
) 𝑔

𝑖

With these rules, FG is a vector space over F of dimension n, with

basis , . . . , .The basis , . . . , is called the natural basis of𝑔
1

𝑔
𝑛

𝑔
1

𝑔
𝑛
 

FG.

6.1 Example

Let G = = (To avoid confusion with the element 1 of𝐶
3

< 𝑎:  𝑎3 = 𝑒 >.

F, we write e for the identity element of G, in this example.) The

vector space CG contains

u =e - a + 2 and v = e +5a𝑎2 1
2

We have

u + v = 3
2 𝑒 + 4𝑎 + 2𝑎2, 1

3 𝑢 = 1
3 𝑒 − 1

3 𝑎 + 2
3 𝑎2

Sometimes we write elements of FG in the form ( )
𝑖=0

𝑛

∑ λ
𝑔
𝑔 λ

𝑔 
∈𝐹

Now, FG carries more structure than that of a vector space - we

can use the product operation on G to define multiplication in FG as

follows:
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𝑔∈𝐺
∑ λ

𝑔
𝑔( ) ℎ∈𝐺

∑ µ
ℎ
ℎ( ) =

𝑔,ℎ ∈𝐺
∑ λ

𝑔
µ

ℎ
(𝑔ℎ)

=
𝑔∈𝐺
∑

ℎ∈𝐻
∑ (λ

ℎ
µ

ℎ−1𝑔
)𝑔

Where all , F   λ
𝑔

µ
ℎ

∈

6.2 Example
If G = and u, v are the elements of CG which appear in Example 6.1,𝐶

3
 

then

uv = (e - a + 2 )( e +5a)𝑎2 1
2

e +5a - a - 5 + +101
2

1
2 𝑎2 𝑎2 𝑎3

21
2  𝑒 + 9

2  𝑎 − 4𝑎2

6.3 Definition
The vector space FG, with multiplication defined by

𝑔∈𝐺
∑ λ

𝑔
𝑔( ) ℎ∈𝐺

∑ µ
ℎ
ℎ( ) =

𝑔,ℎ ∈𝐺
∑ λ

𝑔
µ

ℎ
(𝑔ℎ)

, F)   is called the group algebra of G over F.   (λ
𝑔

µ
ℎ

∈

The group algebra FG contains an identity for multiplication, namely the

element 1e (where 1 is the identity of F and e is the identity of G). We write

this element simply as 1.
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6.4 Proposition

Multiplication in FG satisfies the following properties, for all r, s, t FG∈

and         λ F:∈

(1) rs FG∈

(2) r(st) = (rs)t

(3) r1 = 1r = r

(4) (λr)s = λ(rs) = r(λs)

(5) (r + s)t = rt + st

(6) r(s + t) = rs + rt

(7) r0 = 0r = 0.

In fact, any vector space equipped with a multiplication satisfying properties

(1) to (7) of Proposition 6.4 is called an algebra. We shall be concerned only

with group algebras, but it is worth pointing out that the axioms for an

algebra mean that it is both a vector space and a ring.

The regular FG-module

We now use the group algebra to define an important FG-module.

Let V = FG, so that V is a vector space of dimension n over F,

where n = |G|. For all u, v V  , λ F and g, h G, we have∈ ∈ ∈

vg V ,∈

v( gh) = (v g)h,

v1 = v,

(λv) g = λ(v g),

(u + v) g = ug + v g,

by parts (1), (2), (3), (4) and (5) of Proposition 6.4, respectively.

Therefore V is an FG-module.
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6.5 Definition

Let G be a finite group and F be R or C. The vector space FG, with the

natural multiplication  v g (v FG, g G), is called the regular FG-module.∈ ∈

The representation g → obtained by taking B to be the natural basis of[ 𝑔]
𝐵

FG is called the regular representation of G over F.

Note

The regular FG-module has dimension equal to |G|.

6.6 Proposition

The regular FG-module is faithful.

Proof :

Suppose that g G and v g =  v for all v FG. Then 1 g = 1, so g = 1, and∈ ∈

the result follows.

6.7 Example

Let G = = The elements of FG have the form𝐶
3

< 𝑎:  𝑎3 = 𝑒 >.

λ
1
𝑒 + λ

2
𝑎 + λ

3
𝑎2    (λ

𝑖
∈𝐹 )

We have,
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e =(λ
1
𝑒 + λ

2
𝑎 + λ

3
𝑎2) λ

1
𝑒 + λ

2
𝑎 + λ

3
𝑎2

a = e + a + ,                         (λ
1
𝑒 + λ

2
𝑎 + λ

3
𝑎2) λ

3
λ

1
λ

2
𝑎2

= e + a +                         (λ
1
𝑒 + λ

2
𝑎 + λ

3
𝑎2) 𝑎2 λ

2
λ

3
λ

1
𝑎2

By taking matrices relative to the basis e, a, of FG, we obtain the𝑎2

regular representation of G:

e → ,    a→ , →1 0 0 0 1 0 0 0 1 ( ) 0 1 0 0 0 1 1 0 0 ( ) 𝑎2

0 0 1 1 0 0 0 1 0 ( )

FG acts on an FG-module

You will remember that an FG-module is a vector space over F, together with

a multiplication  vg  for v 2 V and g 2 G (and the multiplication satisfies

various axioms). Now, it is sometimes helpful to extend the definition of the

multiplication so that we have an element vr of V for all elements r in the

group algebra FG. This is done in the following natural way.

6.8 Definition
Suppose that V is an FG-module, and that v V and r FG; say∈ ∈
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r = Define vr by
𝑔∈𝐺
∑ µ

𝑔
𝑔     µ

𝑔
 ∈𝐹  

vr=
𝑔∈𝐺
∑ µ

𝑔
(𝑣𝑔)

6.9 Example

If V is the regular FG-module, then for all v V and r FG, the∈ ∈

element vr is simply the product of v and r as elements of the group

algebra, given by Definition 6.3.
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CONCLUSION

A study on Groups as a matrices helps us to understand finite groups in a

better way . It gives as an idea about Group Representations as a Linear

Representation. Here we discussed Group representation theory in detail by

using FG Modules. The topic on irreducible representation help us to study

about the building blocks of representations in more detail.
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