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ABSTRACT 

 

Machine Learning is powered by four critical concepts and is statistics ,linear algebra, 

probability and calculus. 

In first chapter,we discuss about the Least Square Approximation and Minimum 

Norm solution.Least Squares method is a mathematical technique that allows the analyst to 

determine the best way of fitting a curve on top of a chart of data points.It is widely used to 

make scatter plots easier to interpret and is associated with regression analysis. 

                In the second chapter we deal with matrix decomposition.There are several matrix 

decomposition methods while here we discussing about Matrix Eigen Decomposition , 

properties and application of Singular value decomposition(SVD) and Polar Decomposition. 

             In third chapter,we study about Low Rank Approximation,which is a way to recover 

the original low-rank matrix  i.e , find the matrix that is more consistentwith the current 

matrix. 

                     While the last chapter includes Principal Component Analysis ,which is an 

unsupervised learning algorithm that is used for the dimensionally reduction in machine 

learning.                                              
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INTRODUCTION 

            

                        Machine learning is an application of artificial intelligence that provides 

system to the ability to automatically learn and improve from past behaviour. Machine 

learning is all about maths, which in turn helps in creating an algorithm that can learn from 

data to make an accurate prediction. Machine learning is primarily built on mathematical 

prerequisites so as long as you can understand why the maths is used, you will find it more 

interesting. With this, you will understand why we pick one machine learning algorithm over 

the other and how it affects the performance of the machine learning model. In this project, 

we will be discussing exactly the mathematical concepts you need to learn to master the 

concepts of machine learning.We will also learn why we use mathematics in machine 

learning with some examples. Machine learning is powered by four critical concepts and is 

statistics. Linear Algebra, Probability, and Calculus. While statistical concepts are the core 

part of every model, calculus helps us learn and optimize a model. Linear algebra comes 

exceptionally handy when we are dealing with a huge dataset and probability helps in 

predicting the livelihood of events that will be occurring. 
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PRELIMINARIES 

 

 

➢ RANK OF A MATRIX 

 

 Mm×n (R) denotes the set of all m×n matrices with real entries. Rank of a matrix can be 

defined as, 

The number of linearly independent rows or coloumns of A 

• Order of largest non-singular submatrix of A 

• Dimension of row or coloumn space of A 

• The number of non-zero rows in row reduced echelon form of A 

•  The order of identity submatrix in the normal form of A 

• The rank of the linear transformation from  R n to Rm            corresponding A 

• Usually denoted by ρ(A) 
 

➢ EIGEN VALUES AND EIGEN VECTORS 

 

Consider a square matrix n × n.If X is the non-trivial coloumn vector solution of the 

matrix equation AX=λX, where λ is a scalar, then X is the eigen vector of matrix and 

the corresponding value of λ is the eigen value of matrix A. 

 

➢ SOME SPECIAL MATRICES 

Symmetric Matrix 

In linear algebra, a symmetric matrix is a square matrix is equal to its transpose. 

 

Skew Symmetric Matrix 
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A skew symmetric matrix is a square matrix that is equal to negative to its transpose. 

Positive Definite Matrix 

A positive definite matrix is a symmetric matrix where every eigen value is positive
. 

Negative Definite Matrix 

A negative definite matrix is a symmetric matrix all of whose eigen values are negative. 

 

➢ SYSTEMS OF LINEAR EQUATIONS 

 

Linear Systems 

A linear equation in variables x1 , x2 ,…..,xn is an equation of the form  

b=a1x1+a2x2+………………….+anxn, 

 

where a1,a2,……,an and b are constant real or complex numbers .The constant ai is called the 

coefficient of xi and b is called the constant term of the equation. 

 

A system of linear equations (linear system) is a finite collection of linear equation in same 

variables.For instance,a linear system of m equations in n variables x1,x2,……………..,xn can 

be written as; 

 

         a11x1+a12x2+…………………………+a1nxn= b1 

         a21x1+a22x2+…………………………+a2nxn= b2 

 

 

 

 

         am1x1+am2x2+………………………+amnxn+ bm 
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A solution of a linear system above is a tuple (s1,s2,……,sn) of          numbers that makes each 

equation a true statement when the values s1,s2,……….,sn are substituted for 

x1,x2,…………,xn respectively. The set of all solutions of a linear system is called the 

solution of the system. 

 

Any system of linear equations has one of the following exclusive conclusions.   

 (a) No solution. 

(b) Unique solution. 

(c) Infinitely many solutions. 

 

A linear system  is said to be consistent if it has atleast one solution; and is said to be 

inconsistent if it has no solution. 
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CHAPTER 1 

 

Least Square Approximation and Minimum Norm 

Solution 

 

1.1 Over determined System of Equations 

  

Definition: A Linear system is overdetermined if it has more equations than  

variables.  

i.e., 

Consider a linear system of equations A X = b, where A is m by n coefficient 

matrix, X is the unknown vector belongs to 𝑅n and b belongs to 𝑅m is the right  

hand side vector, which is given to us. So, if m > n, (that is when the number of  

observations greater than number of variables), then the system is said to be over- 

determined. 

Example 1.1.1: The following system is an overdetermined system: 

𝑎 + 𝑏 = 0 

𝑎 − 𝑏 = 1 

𝑎 − 2𝑏 = 0 

Clearly No solution to the above system. 

An overdetermined system is almost always inconsistent (it has no solution)  

when constructed with random coefficients. However, an overdetermined  

system will have solutions in some cases, for example if some equation occurs  

several times in the system, or if some equations are linear combinations of the  

others. But, in general, exact solution will come very rarely. So, what we have  

to look? We have to look for n approximate solution. Such an approximate  

solution is called least square approximation of over determined system. 
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one of the very basic example of over determined system is linear regression,  

that is the line fitting. So, generally we often run into the problem that we have  

more than two points and try to represent our points with one straight line.  

So, suppose we are given 10 points and we have to fit a line, which is the best  

fit line from these 10 points. However, these 10 data points which I am talking  

do not lie on a straight line. So, we can try infinitely many straight line to fit all  

the data points, under this situation the problem of least square is to find the  

line that fits the data the best. Here best means which is having the minimum  

residual error, this is called linear regression. The best fitting line is often called  

the least square line or the regression line also. And based on that we say for  

over determined system the solution is least square approximation solution. 

The best means which is having the minimum residual error. Now Residual is  

nothing but the distances between the observed data points and the  

corresponding points on the model line. 

Fig 1.1:  

  

 

To obtain the best fitting line we need to minimize the sum of the square of the  

residuals as we are doing here. Residual is obtained by taking the perpendicular  

distance from line to all points. 

And then sum of the square of all those residual is called the residual error. 
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1.2 METHOD OF LEAST SQUARE APPROXIMATION 

 

Given A X = b, where A belongs to Mm*n(𝑅)  

And m is quite bigger than n that we are having an over determined system.  

Here in least square approximation, we solve the optimization problem that is,  

we minimize the Euclidean norm between A X and b. 

i.e., min ‖ 𝐴𝑋 – 𝑏 ‖2 

 

Example 1.2.1: 

 

Suppose we have a 3 by 2 system. 

Say,  

 

𝑎11 𝑥1 + 𝑎12 𝑥2 = 𝑏1 

𝑎21 𝑥 + 𝑎22 𝑥2 = 𝑏2 

𝑎31 𝑥1 + 𝑎32 𝑥2 = 𝑏3 

Then, Let E = ‖ 𝐴𝑋 – 𝑏 ‖2 

 

                       = ( 𝑎11 𝑥1 + 𝑎12 𝑥2 - 𝑏1)
2 + 

                          ( 𝑎21 𝑥 + 𝑎22 𝑥2 - 𝑏2)
2 + 

                          ( 𝑎31 𝑥1 + 𝑎32 𝑥2 - 𝑏3)2 

 

for minimizing this, we have to put the necessary condition of the minima that  

is , 

𝜕𝐸

𝜕𝑥1
 = 0 and  

𝜕𝐸

𝜕𝑥2
 = 0 

From this we will get two linear equations in 𝑥1 and 𝑥2 , then by solving those  

two linear equations we will get the value of 𝑥1 and 𝑥2, which minimize the sum of the  

squares of the residual errors. 

Easiest Approach 
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The easiest way is, we are having AX = b. 

Multiply both side by 𝐴T. 

So, 𝐴T𝐴 X = 𝐴T b. So, here it A is m by n matrix then 𝐴T A will become n by n  

matrix. 

X = (𝐴T 𝐴)-1 𝐴T b 

      = 𝐴† b,            where 𝐴† = (𝐴T 𝐴)-1 𝐴𝑇 and is called the right pseudo inverse  

of A. 

And X = 𝐴† b, is the least square solution of AX = b.  

x 

Example 1.2.2: 

 

Consider the overdetermined system,  

             (
1 0
1 1
1 2

) (
𝑥1
𝑥2
) = (

6
0
0
) 

 

Here, A=(
1 0
1 1
1 2

)  

Then,  A A= (
3 3
3 5

) 

(AT A)-1
 = 
1

6 
[
5 −3
−3 3

] 

X= A† b 

    = (A
T A) -1 AT b 

    = 
1

6
[
5 −3
−3 3

] (
1 1 1
0 1 2

)(
6
0
0
) 

     =(
5
−3
)  

         x1 =5 and x2 =-3 

This is how we find least square solution or approximation of an over  

determined system. 
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1.3 UNDER DETERMINED SYSTEM OF EQUATIONS 

 

Definition: A Linear system is underdetermined if it has more variables than  

equations.  

i.e., 

Consider a linear system of equations A X = b, where A is m by n coefficient 

matrix, X is the unknown vector belongs to 𝑅𝑛 and b belongs to 𝑅𝑚 in the right  

hand side vector, which is given to us. So, if m < n, (that is when the number of  

observations is considerably lesser than number of variables), then the system  

is said to be underdetermined. In this case, we are having n-m free variables,  

assigning any arbitrary values to these variables lead to a solution of AX = b.  

Therefore, we can have infinitely many solutions of the system AX = b. 

Example 1.3.1: 

The following system is an underdetermined system:  

 

{
𝑎 + 𝑏 = 0
𝑎 − 𝑐 = 1

  

 Clearly this system has infinite number of solutions. 

1.4 MINIMUM NORM SOLUTION 

 

A minimum norm solution is that which minimize ‖X‖ among these infinite  

solutions. i.e., Out of those infinite numbers of solutions we are looking for a 

solution which is having the minimum norm and such a solution is called  

minimum normed solution. 

 

Mathematically how can we pause this problem? So, we have to find out X,  

which Minimize the norm of X, subject to AX = b. 

i.e., min { ‖ 𝐴𝑋 – 𝑏 ‖2+ ‖𝑋‖2} 

 

If we just compare with the earlier one least square 

approximation case, there we were having only this objective function but here  
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we are having this 

minimum norm condition extra. So, how to solve such a system? Again we will  

use the concept of pseudo inverse. 

 

The minimization problem can be solved as, 

𝑋∗ = 𝐴𝑇(𝐴𝐴𝑇)-1 b 

Here, 𝐴†∗= 𝐴𝑇(𝐴𝐴𝑇)-1 is called the left pseudo-inverse of the matrix A. 

 

Example 1.4.1:  

Consider the underdetermined system 

(
1 1 1
−1 −1 1

)(
𝑥1
𝑥2
𝑥3
) = (

1
0
) 

Here A= (
1 1 1
−1 −1 1

) 

 

 

 𝐴𝐴𝑇 = (
1 1 1
−1 −1 1

)(
1 −1
1 −1
1 1

) 

 = (
3 −1
−1 3

) 

 

 (𝐴𝐴𝑇)-1 = 
1

8
(
3 1
1 3

) 

 

 X = 𝐴†∗𝑏 

  = 𝐴𝑇(𝐴𝐴𝑇)-1  

  = (
1 −1
1 −1
1 1

) 
1

8
 (
3 1
1 3

) (
1
0
) 

   =

(

 
 

1

4
1

4
1

2)

 
 

 



11 
 

  

𝑥1 = 1/4 

𝑥2 = 1/4 

𝑥3 = 1/2 

This is the minimum normed solution of the given underdetermined system. 
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CHAPTER 2 

Matrix Decomposition 

 

What is going to be the benefit of decomposing a matrix? What does that mean? When we  

decompose anything, we break it into its constituent elements. Assume we are going to  

disintegrate a tool (a car or a watch!). Such action helps us to understand the core particles  

and their tasks. Furthermore, it helps to have a better understanding of how that specific tool  

works and its characteristics! Assume that the tool is a matrix which we would like to  

decompose. There are different approaches to decompose a matrix. However, perhaps the  

most commonly used one is Matrix Eigen Decomposition which is decomposing a matrix  

using its Eigenvectors and Eigenvalues. 

 

Definition : Assuming we have the square matrix of A€ℝ N×N. The  

nonzero vector  V € ℝN×1 is an eigen vector and scalar λ is its associated  

eigenvalue if we have: 

 Av = λv 

 

2.1 Matrix Eigen decomposition: 

Assuming we have the square matrix A € ℝN×N  of which has N linear  

independent eigenvectors Vi ,i €1,….,N. Then, we can factorize  

matrix A as below: 

 

 A = V˄V-1 

 

Where V € ℝN×N is the square matrix whose  jth column is the eigenvector Vj  of A, and ˄ is  

the diagonal matrix whose diagonal elements are the corresponding eigenvalues of A. 

 

 

Singular Values: 
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Let A be a m by n matrix having real entries. Consider the matrix 𝐴𝑇𝐴. So, AT𝐴 

will be a n by n matrix which is symmetric and positive semi definite, that is, all  

the eigenvalues of 𝐴𝑇𝐴 are non-negative. 

Now suppose Eigen values of A are 𝜆1 , 𝜆2 , 𝜆3 , . . . . . . . , 𝜆𝑛 such that , 

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ . . . . . . . ≥ 𝜆𝑛 ≥ 0 

Let 𝜎𝑖 = √𝜆𝑖 

i.e., 𝜎1 ≥ 𝜎2 ≥ 𝜎3 , . . . . . . . . . . . 𝜎𝑛 ≥ 0 

The numbers 𝜎1 , 𝜎2 , 𝜎3 , . . . . . . . . . . . , 𝜎𝑛 are called singular values of A. 

 

2.2 Singular Value Decomposition: 

 

Let A be a m by n matrix with rank r. Here in machine learning usually we play  

with real data. So, here we are assuming that entries are real numbers. The  

singular value decomposition of A, 

                                                    A = U ∑ 𝑉𝑇  ; 

where, U is a m by m matrix or better to write m by m orthogonal matrix such  

that 𝑈𝑇 = 𝑈−1 or columns of U are pair wise orthonormal. V is a n by n  

orthogonal matrix. 

∑ 𝑖𝑠 a m by n matrix, where diagonal elements of first r 

rows are singular values of A and rest of the entries are 0.  

 

Matrices U and V 

The columns of V are orthonormal Eigen vectors 𝑣1 , 𝑣2 , 𝑣3 , . . . . . . . , 𝑣𝑛 of  

the n by n positive semi definite matrix , 𝐴𝑇𝐴. So for i = 1,2,3, . . . , n we have, 

                                                   𝐴𝑇𝐴 𝑣𝑖 = 𝜎𝑖2 𝑣𝑖 

Similarly columns of U are orthonormal Eigen vectors 𝑢1 , 𝑢2 , 𝑢3 , . . . . . . . ,  

𝑢𝑚 of the m b m positive semi definite matrix 𝐴𝐴𝑇, So for j = 1,2,3, . . . . . . . . , m  

we have, 

                                          𝐴𝐴𝑇 𝑢𝑗 = 𝜎𝑗2 𝑢𝑗 
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Example 2.1 : 

 

Find the SVD of A = (
0 1 1
√2 2 0
0 1 1

) 

 

Step 1 (Finding the matrix U) 

 

Here 𝐴𝐴𝑇 = (
2 2 2
2 6 2
2 2 2

) 

Now find the Eigen values of 𝐴𝐴𝑇 and arrange them in descending order, 

i.e., 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0 

On computing, we get the Eigen values of 𝐴𝐴𝑇as 8,2,0 

i.e., 𝜆1 = 8 , 𝜆2 = 2 , 𝜆3 = 0 

Hence ., 𝜎1 = 2 √2 𝜎2 = √2 𝜎3 = 0 

Now the Eigen vectors corresponding to the Eigen values of 𝐴𝐴𝑇are : 

 

 λ1 =8:(
1

√6

2

√6

1

√6
)r  

λ2  = 2:(
1

√3

1

√3
−

1

√3
)r  

λ3  = 0:(
1

√2
0 −

1

√2
)r  

 

So, U= 

(

 
 

1

√6
−

1

√3

1

√3
2

√6

1

√3
0

1

√6
−

1

√3
−

1

√2)

 
 

 

  

Step 2 (Finding the matrix V) 

Here we consider the matrix 𝐴𝑇𝐴, 
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𝐴𝑇𝐴 =

(

 

2 2√2 0
2

√6

1

√3
0

1

√6
−

1

√3
−

1

√2)

  

On simple computation we get Eigen values of 𝐴𝑇𝐴 are : 8,2,0 

Now the Eigen vectors corresponding to the Eigen values of 𝐴𝐴𝑇are : 

µ1 = 8 : (√2  3  1)r 

 

µ2 =2:(−
1

√2
0 1)r   

 

 μ3 =0:(√2 −1 1)
r 

 

Therefore V = (
√2 −

1

√2
√2

3 0 −1
1 1 1

) 

 

Step 3 ( Finding the Matrix ∑ ) 

 

We know ∑ 𝑖𝑠 a m by n matrix, where diagonal elements of first r 

rows are singular values of A and rest of the entries are 0, where r is the rank of  

the matrix A. 

Here rank of A = 2 , so we need only consider the singular values 𝜎1 = 2√2 and  

𝜎2 = √2 

Hence the matrix ∑ = (
2√2 0 0

0 √2 0
0 0 0

) 

Thus we get the singular value decomposition of the given matrix 

 

i.e,(
0 1 1

√2 2 0
0 1 1

)= 



16 
 

(

 
 

1

√6
−

1

√3

1

√2
2

√6

1

√3
0

1

√6
−

1

√3
−

1

√3)

 
 

  (
2√2 0 0

0 √2 0
0 0 0

)  (

√2 3 1

−
1

√2
0 1

√2 −1 1

) 

 

 

2.3 Properties and Applications of SVD 

Geometric Interpretation of SVD 

 

 

                       

                      

 

Suppose we have a unit circle and these two vectors; one is blue and another one is red. If we  

apply a transformation A which may be a rectangular matrix also, then this particular circle  

transformed into this ellipse, having this orientation. As we know that singular value  

decomposition is 

                                                          A = U ∑ 𝑉 

 

First we will apply 𝑉𝑇 on it. So, once we apply 𝑉𝑇 on it, which is an orthogonal  

matrix because V is an orthogonal matrix. It will rotate this object by some  

angle based on the value of V transpose. Now we are having the same circle,  
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but orientation is different. Now, we will apply ∑ 𝑜n it. So, ∑ 𝑖𝑠 having scaling  

factors and though these scaling factors are proportional to singular values, so  

it will scale this circle and it will deform into an ellipse. If both singular values  

are equal i.e., 𝜎1 = 𝜎2 , it will remain as a circle otherwise it will become an  

ellipse. Now apply U on it. U is again an orthogonal matrix and it will rotate this  

ellipse as show in the above figure. In this way, we can interpret singular value  

decomposition, that it is a sequence of transformation; first rotation, then  

scaling and then rotation. So, this is the geometrical interpretation of singular  

value decomposition. 

 

Properties 

 

A be a m by n real matrix means having real entries and rank of A equals to r.  

Let us consider that the singular value decomposition of A is U ∑ 𝑉𝑇. Now, if  

the rank A equals to r, then the first r singular values of A will be nonzero. That  

is rank of matrix A equals to number of nonzero singular values. The range  

space of A is given by the first r columns of the matrix U. The null space of A is  

given by the last n - r columns of V that is the solution space of AX equals to 0. 

Now consider 𝐴𝑇, 

𝐴𝑇 = (U ∑ 𝑉𝑇)T = V ∑𝑇 𝑈𝑇 

now what I want to say that the in the similar way that the range space of 𝑨𝑻 

  

is given by the first r columns of V and the null space of 𝑨𝑻 is given by last m-r  

columns of U. 

 

Another application is the relation between SVD and pseudo inverse 

 

Let A is m by n matrix. So, here U will be m by m orthogonal matrix and V will  

be n by n orthogonal matrix and ∑ 𝑖𝑠 a m by n matrix. Let rank of A equals to r,  

then  
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𝜎1 ≥ 𝜎2 ≥ 𝜎3 , . . . . . . . . . . . 𝜎𝑟 > 0 and rest of the singular values = 0.  

Because A is a rectangular matrix.  

𝐴† = (U ∑ 𝑉𝑇)†  

 

      = (𝑉𝑇)-1 ∑† 𝑈−1    

       

       = (𝑉−1)-1 ∑† 𝑈−1 [ since V is orthogonal, 𝑉𝑇= 𝑉−1] 

       

        = V ∑† 𝑈𝑇              [ since U is orthogonal, 𝑈𝑇= 𝑈−1] 

So, if U and V transpose are given you can easily find out V and U transpose. 

  

Calculating ∑† 

 

Suppose A is 3 by 3 square matrix, with singular values 𝜎1 , 𝜎2, 𝜎3. But (𝜎3 = 0) 

∑ = [
𝜎1 0 0
0 𝜎2 0
0 0 0

]    then ∑† = [

1

𝜎1
0 0

0
1

𝜎2
0

0 0 0

] 

Suppose A is 3 by 5 matrix , with singular values 𝜎1 , 𝜎2, 𝜎3. But (𝜎3 = 0)  

 

Suppose A is 5 by 3 matrix , with singular values 𝜎1 , 𝜎2, 𝜎3. But (𝜎3 = 0)  

                         
 

 Example : Find the pseudo-inverse of A = (
4 11 14
8 7 −2

) 
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The SVD of A = 

 

if we calculate here A times pseudo inverse of A, we will get the identity matrix  

of order 2, that is why it is the right pseudo inverse here in this case. So, this is  

another application of singular value decomposition, i.e., calculating pseudo  

inverse. 

Other Applications of Singular Value Decomposition (SVD) 

 

               o Image Compression 

               o Image Recovery 

               o Eigen faces 

               o Spectral Clustering 

               o Background Removal from Videos 

 

2.4 POLAR DECOMPOSITION 

 

Any complex number z in polar form , can be written as z = 𝑟 𝑒𝑖θ, r = √𝑥2 + 𝑦2,  

θ = tan-1(y/x). Now, if we see here r is always non negative and 𝑒𝑖θ gives an  

orientation. In the same manner we want some factorization of a matrix  
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somewhat similar to the what we have seen for the complex number z. Now  

this is the motivation for Polar Decomposition of a matrix. We are having  

many applications of this polar decomposition like in machine learning , in  

computer graphics and so on. Because it is a matrix factorization something  

like in terms of an orthogonal matrix and a positive semi definite matrix. And  

that you can utilize in many of the learning algorithm. 

  

Theorem 2.4.1 

 

For any square matrix A, let us say A belongs to the vector space of n by n real  

matrices, there exists an orthogonal matrix W and a positive semi definite  

matrix P such that A = W P. So, here W is an orthogonal matrix means; the  

columns of W are orthonormal and P is a positive semi definite matrix.  

Furthermore, if A is an invertible matrix, then the factorization is unique; means  

this kind of decomposition is unique. Such a decomposition of any matrix A = W  

P is called Polar Decomposition.  

 

Proof 

  

From the SVD of A, we have  

 

                         A = 𝑈𝑆𝑉𝑇 

                              = 𝑈𝑉𝑇𝑉𝑆𝑉𝑇 ( as V is orthogonal, 𝑉𝑇 = 𝐼𝑛) 

                              = W P 

Here W = 𝑈𝑉𝑇 and is an orthogonal matrix, because product of two orthogonal  

matrices is orthogonal. 

 

and 𝑃 = 𝑉𝑆𝑉𝑇, which is a Positive Semi Definite Matrix, because  

𝑃 = 𝑉𝑆𝑉𝑇, implies that the matrices P and S are similar. Thus Eigen values of  

both the matrices will be the same. All the Eigen values of S are non-negative,  
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Example 2.4.1: 

 

Find Polar Decomposition of the matrix 𝐴 = (
11 −5
−2 10

) 

The SVD of A= USVT 

 

Polar Decomposition of A = WP                  

 

 

Right Polar Decomposition 

 

let A be a m by n matrix, where m ≥ n. Then, the right polar decomposition of A  

is A = UP; where U is a m by n matrix with orthonormal columns and P is a n by  

n positive semi definite matrix. 

 

Left Polar Decomposition 

 

The another decomposition is left polar decomposition. So, let A be a m by n  

matrix where m ≤ n, then the left polar decomposition of A is A = HU; where H  

is a m by m positive semi definite matrix and U is a m by n matrix having  

orthonormal columns. 

Example 1 
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Find polar decomposition of A = (
3 1
0 1
1 0

) 

 

Here we will be having right polar decomposition. i.e., A = UP 

Note: In right decomposition, the procedure to find Matrix P is as follows: 

                             P = √𝐴𝑇𝐴 

𝐴𝑇𝐴 will be a n × n square matrix, hence it will have Matrix Eigen  

decomposition.  

𝐴𝑇𝐴 = 𝑇 𝑄1/2 𝑇−1 ,where T is the square matrix whose jth  coloumn is the eigenvector  Vj  of 

𝐴𝑇𝐴 and Q is the diagonal matrix whose diagonal elements are the corresponding eigenvalues 

of A𝑇𝐴. 

So, √𝐴𝑇𝐴 = 𝑇 Q1/2 𝑇 −1 

i.e, P= TQ1/2 T-1 

Finally, U = 𝐴𝑃−1 

So, in this problem, 𝐴𝑇𝐴 = (
10 3
3 2

) .Now use Matrix Eigen Decomposition and  

decompose the matrix (
10 3
3 2

) into 𝑇 𝑄 𝑇−1 

On computing, we get 

 

Hence, P = √𝐴𝑇𝐴 = 𝑇 𝑄1/2 𝑇−1  

 

                       Now U= AP-1 
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CHAPTER 3 

LOW RANK APPROXIMATION 

 

In mathematics, low-rank approximation is a minimization problem, in which 

the cost function measures the fit between a given matrix (the data) and an 

approximating matrix (the optimization variable), subject to a constraint that 

the approximating matrix has reduced rank. The problem is used for 

mathematical modelling and data compression. The rank constraint is related 

to a constraint on the complexity of a model that fits the data. In applications, 

often there are other constraints on the approximating matrix apart from the 

rank constraint, e.g., non-negativity and Hankel structure. 

Definition  

𝑀𝑚∗𝑛(𝑅) denotes the set of all m x n matrices with real entries. Rank of a  

matrix can be defined as, 

The number of linearly independent rows or columns of A 

• Order of largest non-singular submatrix of A 

• Dimension of row or column space of A 

• The number of non-zero rows in row reduced echelon form of A  

• The order of identity submatrix in the normal form of A 

• The rank of the linear transformation from 𝑅𝑛to 𝑅𝑚 corresponding A 

• Usually denoted by ρ(A) 

SUPPOSE r be the rank of A then, that suggests that dimension of column space  

of A is r , implies there exist a basis consisting of r linearly independent vectors  

that spans the column space of A. 

Let B = {𝑏1, 𝑏2, 𝑏3,. . . . . . . ,𝑏𝑟} be such a basis for the column space of A. 

Then by definition, columns of A can be uniquely expressed as linear  

combination of members in B. 

Say , Let 𝑎1 , 𝑎2 , . . . . . . , 𝑎𝑛 be n columns of A 

Then, 
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 𝑎1 = 𝑐11 𝑏1 + 𝑐21 𝑏2 + . . . . . . . . . . . . . . . . + 𝑐𝑟1𝑏𝑟Type equation here. 

 𝑎2 = 𝑐12 𝑏1 + 𝑐22 𝑏2 + . . . . . . . . . . . . . . . . + 𝑐𝑟2𝑏𝑟 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

𝑎𝑛 = 𝑐1𝑛 𝑏1 + 𝑐2𝑛 𝑏2 + . . . . . . . . . . . . . . . . + 𝑐𝑟𝑛𝑏𝑟 

[ 𝒂𝟏 , 𝒂𝟐 , . . . . . . , 𝒂𝒏 ] = [ 𝒃𝟏 , 𝒃𝟐 , . . . . . . . , 𝒃𝒓][
𝐂𝟏𝟏 ⋯ 𝑪𝟏𝒏
⋮ ⋱ ⋮
𝑪𝒓𝟏 … 𝑪𝒓𝒏

] 

So, we are saying that if A is a m by n matrix, rank of A equals to r then we can  

have a factorization of A as , A = B x 𝐶𝑇, means we are writing the columns of A  

as the linear combination of product of the basis of the range space of A and  

then a matrix C; and here B is m by r matrix because, you are having r vectors  

each one of m dimension, and C is a n by R matrix. Then this particular product  

will be well defined. 

 

 

           IMPORTANT POINTS TO REMEMBER 

                                   

            Number of elements in A = mn 

            Number elements in B * 𝐶𝑇= m.r + n.r = (m+n) . r, where r = ρ(A) 

 

 

 

 

Now, consider a situation where, where A is a 50 by 100 matrix with rank of A  

equals to let us say 20. So, how many elements you have to store here. For  

writing this matrix means you have to store 50 into 100 that is 5000 elements;  

however, in this case how many elements you require to save? 50 into 20 that  

is 1000 plus 100 into 20 that is 2000, so only 3000.This is the motivation of low  

rank approximation. So, in original case you have to save 5000 elements, but in  

this case you have to save only 3000 elements, and you are saving the same  

thing that is the matrix A. So, in that way you can save the memory as well as 
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the computational cost because, if you want to operate something on this  

matrix A, you have to process all the 5000 elements means, if it is an digital  

image you will be having 5000 pixels in A, but in case of if you are writing it in  

this way B into C transpose then, you have to play with only 3000 pixels. This is  

a motivation for low rank approximation. Given a matrix or a tensor you find  

out another matrix or tensor which is having the lower rank to the original one  

and the same time it is quite close to the original one. 

Let A ϵ 𝑀𝑚×𝑛 (often large), having rank (A) ≤ min{m,n}. The low rank  

approximation of A is to find another matrix 𝐴𝑘 ϵ 𝑀𝑚∗𝑛 which is having rank 

 k ≤ r = rank(A) and approximate A. 

 

To find the “best” 𝐴𝑘 , we must define how closely 𝐴𝑘 approximates A. The  

simplest metric is the Frobenius norm of A - 𝐴𝑘 . This criterion leads to the  

following low rank approximation problem. 

                  ‖ 𝑨 − 𝑨𝒌 ‖ = min { ‖ A - 𝑨𝒌 ‖ 𝑭 : 𝑨𝒌 ϵ 𝑴𝒎∗𝒏 and 𝝆(𝑨𝒌) ≤ k } 

Now, best-k approximation to A is given as 𝐴𝑘 = ∑ 𝜎𝑖𝑢𝑖𝑣𝑖  𝑘
𝑖=1

T, where 𝑢𝑖 and 𝑣𝑖 

denote the i th column of U and V respectively in the SVD of A. 

In the sense that,  

                         ‖ 𝐴 − 𝐴𝑘 ‖ ≤ ‖ 𝐴 − �̃� ‖ 

                               

For any �̃� in 𝑅𝑚×𝑛 with rank(�̃�) ≤ k 

 

Measure of Quality of Approximation 

 

The Measure of Quality of Approximation is given by, 

 

Example: 
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Find the rank 2 approximation of A = (
3 2 1
0 2 1
0 0 1

) 

 

Solution : The SVD of A is given by , A = 𝑈𝑆𝑉𝑇 

 

  

 

The rank 2 approximation of A is given by 𝐴2 
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CHAPTER 4 

PRINCIPLE COMPONENT ANALYSIS 

 

It is a very popular and very important concept in machine learning for  

reducing the dimension of the data that is called Principal Component Analysis.  

So, it is a manifold learning technique and really very applicable among  

machine learning research. 

what is this PCA? So, take a very simple example. 

Suppose, we are having some data of five cities. So, cities are C 1, C 2, C 3, C 4  

and C5 and 4 attributes or parameters and they are Education, Transport,  

Entertainment and finally Safety, now based on these 4 parameters we are  

going to judge the best city. Suppose we have graded all those parameters  

education, transport facility, entertainment opportunity and safety on a 10  

pointy scale.  

Consider following table; 

 

Now, we have to classify all those cities based on these parameters. But what is  

happening here, suppose we do not want to classify with all four features. So,  

instead of these four features, four attributes, education, transport, entertainment and safety,  

we want three features so that we can plot a threedimensional plot, we can have for these all  

five city data and then, I can classify them by using some hyper plane in R3. Essentially, what  

we need is to transform a 4 dimensional space into a 3 dimensional one. i.e. to transform 𝑅4 to  

𝑅3. 
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Any vector in 𝑅4 will be of the form   (

𝑋1
𝑋2
𝑋3
𝑋4

) and that of 𝑅3 will be (
𝑌1
𝑌2
𝑌3
),so the  

required transformation can be achieved if we can find a 3 × 4 matrix A such  

that, 

 

This way we can transform four-dimensional data set to a three-dimensional  

data 

set or suppose, we want to go to two-dimensional data set it will become a 2 by  

4 matrix. In short, our aim is to reduce the dimension of data without  

compensating on its content or information. For example, here if we say for  

classification which of the feature vector is not having much information. The  

vector or the column in which I am having minimum variation and that is the  

column corresponding to the parameter transportation. So, if you remove this  

column, then it will not make any because all the cities are having almost same  

value. So, it will not make any difference in the classification. PCA principal  

component analysis is a tool for doing this kind of dimension reduction. 

 

Definitions 

 

Mean : Given a data set X = {𝑥1, 𝑥2, . . . . . . . 𝑥𝑛}.The arithmetic mean is the  

most commonly used and readily understood measure of central tendency in a  

data set. In statistics, the term average refers to any of the measures of central  

tendency. The arithmetic mean of a set of observed data is defined as being  

equal to the sum of the numerical values of each and every observation, divided  

by the total number of observations. 
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Standard Deviation: It is a measure of the amount of variation or dispersion of  

a set of values. A low standard deviation indicates that the values tend to be  

close to the mean of the set, while a high standard deviation indicates that the  

values are spread out over a wider range. 

 

Covariance: Covariance is a measure of the relationship between two random  

variables and to what extent, they change together. 

 

 

 

 

4.1 Procedure for Performing Principal Component  

Analysis 

 

Step 1: Data Set 

 

Step 2: Compute the means of the variables 

Mean of 𝑋𝑖 = 𝑋𝑖 = 1/m ∑  𝑋𝑖𝑘𝑚
𝑘=1  

 

Step 3: Calculate Covariance Matrix 

Find covariance of all ordered pairs (𝑋𝑖, 𝑋𝑗) 
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Construct an n × n matrix S and this matrix is called Covariance matrix. 

S = (
𝐶𝑜𝑣(𝑋1, 𝑋1) … 𝐶𝑜𝑣(𝑋1, 𝑋𝑛)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑋𝑛, 𝑋1) … 𝐶𝑜𝑣(𝑋𝑛, 𝑋𝑛)

) 

 

this particular matrix tells you, if you are having n-dimensional data in which  

direction it is having maximum variation. It is symmetric matrix. And if it is  

symmetric matrix, it will be having real eigenvalues and you will be having  

always orthogonal decomposition, means you can have orthogonal  

eigenvectors of this matrix. 

 

Step 4: Calculate Eigen values and normalized Eigen vectors of the Covariance  

matrix.  

 

Definition: The Principal Components are the eigenvectors of the covariance 

matrix of the data. First Principal Component is the eigenvector corresponding  

to largest eigenvalue of the covariance matrix. The meaning of first principal  

component is that, in the direction of that vector the dataset will be having the  

maximum variability. So, using this fact, if we want to transform a n  

dimensional dataset to a k-dimensional dataset, (k<n) then we will select first k  

principal components. We will get k eigenvectors; those are orthogonal  

because the covariance matrix is a symmetric matrix. Those k orthogonal  

eigenvectors will expand a k-dimensional space and then your data will become  

k-dimensional. 

So, this is the overall idea of principal component analysis. 

 

Step 5: Derive New Data Set 

In the new data set with reduced dimension, the new entries will be 𝑃𝑖𝑗 
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corresponding to each 𝑋𝑖𝑗.  

 

  

And 𝑃𝑖𝑗 = 𝑒𝑖 𝑇   and i represents the i th Principal component 
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CONCLUSION 

  

 Machine Learning is a division of Artificial Intelligence that focuses on building applications  

 by processing available data accurately. The primary aim of machine learning is to help 

 computers process calculations without human intervention. Machine learning is one of the 

 most popular topics of nowadays research. This particular topic is having applications in all 

 the areas of engineering and sciences. Various tools of machine learning are having a rich  

 mathematical theory. Therefore, in order to develop new algorithms of machine/deep  

 learning, it is necessary to have knowledge of all such mathematical concepts. 
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