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ABSTRACT 
 

Coding theory is the study of the methods for efficient and accurate of information from one 

place to another .The theory has been developed for such diverse application as the 

minimization of noise from compact disc recordings data trasfer from one computer to another 

or from memory to central processor,and information transmission from a distant source such 

as weather or communication satellite or the voyager spacecraft which sent pictures of jupitor 

and saturn to Earth.  

 Moving some data from one place to another requires the data to move through some medium. 

What we wish is that the data which one party sends is exactly the same as the data which the 

other party receives. But in general, there is not always a guarantee that the data really stays 

the same as it goes through the medium. For example, a satellite sends data in the form of  

radiowaves to some station on earth, but some interference can easily change that signal. This 

means the data received at the station might not be the same as the original. This is because of 

the presence of different kinds of noises. The subject of error correcting codes ( ECC ) arose 

originally in response to practical problem in the reliable communication of digitally encoded 

information. Since then algebraic coding has developed many connections with portions of  

algebra and  combinatorics. The history of  ECC started with the introduction of hamming 

codes ( Hamming 1974 ), at or about the same time as the seminal work of Shannon (1948). 

Shortly after, Golay codes were invented ( Golay 1947 ). These two first classes of codes are 

optimal, and will be discussed in this project.  

All error correcting codes are based on the same basic principle: redundancy is added to 

information in order to correct any error that may occur in the process of transmission or 

storage. The message to be communicated is first “encoded”, i.e. turned into a codeword, by 
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adding redundancy. The codeword is then sent through the channel and the received message 

is “decoded” by the receiver into a message resembling, as closely as possible, the original 

message. The degree of resemblance will depend on how good the code is in relation to the 

channel. There are various types of  ECC  but in this project we restrict our attention to linear 

block codes  (or simply linear codes) only, which has wide applications. Linear codes allow 

for more efficient encoding and decoding algorithms than other codes.  

In the first chapter of  this project a more detailed explanation of linear codes with definitions 

and examples to clarify them are explained. Then in the second chapter, some of the encoding 

and decoding algorithms such as nearest neibourhood(maximum likelihood) decoding, and  

syndrome decoding are discussed. The third chapter is left to discuss some important classes 

of linear codes such as Hamming codes and  Golay codes. Some of the applications of linear 

ECC codes in various fields are also discussed in this chapter. 
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INTRODUCTION 
 

Information media ,such as communinication systems and storage devices of data are not 

absolutely reliable in practice because noise or other forms of introduced interference.One of 

the task in coding theory is to detect,or even correct errors. 

 

The common feature of communication channels is that information is emanating from a source 

and is sent over the channel to a receiver at the other end. 

 

A communication channel is illustrated in the figure 1.1 at source ,a message denoted x in the 

figure is to be send.If no modification is made to the message and it is transmitted directly over 

channel,any noise would disort the message so that it is not recoverable.In order to avoid this 

we add some redundancy to the orginal message so that hopefully the received message is the 

orginal message that was sent.The redunduncy is added by the encoder called a code word  c 

in the figure in the form of an error vector e distords the code word producing a code word y1 

.The received vector is then sent to be decorded where the errors are removed. The redundancy 

is then removed and we will get an estimate x̂ of the orginal message.Hopefully x̂ = x 

 

Figure 1.1 



4 

 

 The goal of channel coding is to construct encoders and decoders in such a way as to effect:  

1) Fast encoding of messages  

2) Easy transmission of encoded messages  

3) Fast decoding of received messages 

 4) Maximum transfer of information per unit time 

 5) Maximal detection or correction capability 

 

 Linear codes are flexible and powerful class of error detection and correction codes which 

enable efficient encoding and decoding procedures. To understand more about linear codes 

first familiarize with basic definitions. 
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1.LINEAR CODES 
 

1.1 Linear codes 

 

Definition 1.1: Let 𝐴𝑞 
𝑛   denote the veotor space of all n-tuple over the field Aq   𝐴q = {𝑎1, 𝑎2, … 

𝑎q} be an alphabet we call the 𝑎i values symbols. A block code 𝐶 of length 𝑛 over 𝐴q is a subset 

of𝐴𝑞 
𝑛 . A vector 𝑐 ∈ 𝐶 is called a codeword. The number of elements in 𝐶, denoted |𝐶|, is called 

the size of the code. If 𝐶 is not only a subset of, 𝐴𝑞 
𝑛 but a subspace as well, then 𝐶 is a linear 

code.|𝐶| is called the dimension of linear code. A code of length 𝑛 and size 𝑘 is called a   (𝑛, 

𝑘) code. 

 

 

Example 1.1: A code over 𝐴 = {0,1} is a binary code. Here 𝐴 is an alphabet, 0 and 1 are 

symbols. 

𝐶 = {(0,0,1)(1,0,0)(1,1,1)} subset of 𝐴3 is a block code and in this case |𝐶| = 3. Any element in 

𝐶 is called a binary code. In general, if A contains q elements, then it is called a 𝑞-ary code. 

 

 Definition 1.2: Let 𝑆 ⊆𝐴𝑞 
𝑛  . The set of all vectors orthogonal to 𝑆 is denoted by 𝑆ꓕ is called 

the orthogonal complement of 𝑆. If 𝐶 =< 𝑆 >, then 𝐶ꓕ =< 𝑆 ꓕ> which is also a linear code and 

is called dual code of 𝐶. If 𝐶 = 𝐶ꓕ, it is called a self dual code.  

 

 

Definition 1.3: Hamming Weight of a vector 𝑣 in  𝐴𝑞 
𝑛 is given by the number of non zero entries 

in 𝑣 and is denoted by 𝑤𝑡(𝑥). 

 

Example 1.2:If  U=(10110) then wt(U)=3 

If  U=(1100) then wt(U)=2 

 

Definition 1.4: Minimum Weight is the minimum of hamming weight of all codewords in a 

block code 𝐶. 

𝑤𝑡(𝐶) = 𝑚𝑖𝑛{𝑤𝑡(𝑥): 𝑥 ∈ 𝐶, 𝑥 ≠ 0}. 
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 Definition 1.5: Hamming distance between vector 𝑢 and 𝑣 in 𝐴𝑞 
𝑛  is  given by the number of 

non zero entries in their difference i.e., d: 𝐴𝑞
𝑛 × 𝐴𝑞

𝑛→ ℤ  is given by 

𝑑(𝑢, 𝑣) = 𝑤𝑡(𝑢 − 𝑣). 

Example 1.3: If U=(10101010)  and v=(10111000)  then u and v differs in two places so that 

d(u,v)=2 

 

Remark 1.1: The Hamming distance between 𝑥 and 𝑦 is the same as the Hamming weight of 

(𝑥 ⊕ 𝑦). The symbol ⊕ means the bitwise XOR operator. 

 

Definition 1.6: Minimum distance of a code 𝐶 is the smallest distance between distinct pairs 

of vectors of 𝐶. If 𝐶 is a linear code the difference of 𝑢 and 𝑣 is also in 𝐶. So the minimum 

distance is then the minimum weight over all non zero vectors in 𝐶. Minimum distance of a 

codeword 𝐶 is denoted by 𝑑(𝐶) 

 

Example 1.4: Consider 𝐶 = {100,011,111} which is a subset of 𝐴𝑞
𝑛. Let 𝑥 = 100 , 𝑦 = 011 , 𝑧 

= 111 . Then,  

𝑤𝑡(𝑥) = 1 

𝑤𝑡(𝑦) = 2 

𝑤𝑡(𝑧) = 3 

𝑤𝑡(𝐶) = 𝑚𝑖𝑛{𝑤𝑡(𝑥), 𝑤𝑡(𝑦), 𝑤𝑡(𝑧)} 

= 𝑚𝑖𝑛{1,2,3} 

                                                                  = 1 

𝑑(𝑥, 𝑦) = 3 

𝑑(𝑦, 𝑧) = 1 

𝑑(𝑧, 𝑥) = 2 

 

𝑑(𝐶) = 𝑚𝑖𝑛{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧), 𝑑(𝑧, 𝑥)} 

                                                     = 𝑚𝑖𝑛{3,2,1} 

                                                     = 1 

Theorem 1.1: If 𝐶 is a linear code in, then 𝑑(𝐶) = 𝑤𝑡(𝐶) 

. 

 Proof. Let 𝑥 and 𝑦 are any two different codewords. Then by using Remark 1.1 and the fact 

that 𝑥 − 𝑦 is some codeword 𝑧 ≠ 0, we have: 
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𝑑(𝑥, 𝑦) = 𝑤𝑡(𝑥 − 𝑦) 

= 𝑤𝑡(𝑧) 

                               ≥ min{ 𝑤𝑡(𝑧)|𝑧 ∈ 𝐶, 𝑧 ≠ 0 } 

= 𝑤𝑡(𝐶) 

This holds for any two different 𝑥 and 𝑦, thus 

                                                                     𝑑 (𝐶) ≥ 𝑤𝑡(𝐶). 

On the other hand, fixing one codeword to be the null codeword, we have: 

𝑑(𝐶) = min{𝑑(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦 } 

≤ min{𝑑(0, 𝑦)|𝑦 ∈ 𝐶, 𝑦 ≠ 0} 

= min{ 𝑤𝑡(𝑦)| 𝑦 ∈ 𝐶, 𝑦 ≠ 0} 

                                                     = 𝑤𝑡(𝐶) 

i.e.,                                       𝑑(𝐶) ≤ 𝑤𝑡(𝐶) 

Combining the two inequalities gives us 𝑑(𝐶) = 𝑤𝑡(𝐶).  

 

Theorem 1.2 : Let 𝐶 be a linear code of length n over 𝐴𝑞. Then, 

 

i) |𝐶| = 𝑞 𝑑𝑖𝑚(𝐶) 

ii)  𝐶 ⊥ is a linear code and 𝑑𝑖𝑚(𝐶) = 𝑙𝑜𝑔 |𝐶|  

iii) (𝐶 ꓕ) ⊥ = C 

  

Definition 1.7: The rate of a code is the ratio 𝑅 =
𝑘

𝑛
  where 𝑘 is the dimension and 𝑛 is the 

length of the code.  

Definition 1.8: The relative minimum distance of a code is the ratio 𝛿 = 
𝑑

𝑛
  where 𝑑 is the 

minimum distance and 𝑛 is the length of the code. 

 Definition 1.9: The information rate of 𝐶 is defined to be 𝑅(𝐶) = (𝑙𝑜𝑔𝑞 𝑘)/ 𝑛 where 𝑘 is the 

size and 𝑛 is the length of the code. 

 Definition 1.10: Two (n, k) codes over 𝐴𝑞 are equivalent if one can be obtained from the 

other by a combination of operations of the following types: 

(i) permutation of the n digits of the codewords; 

(ii)  multiplication of the symbols appearing in a fixed position by a nonzero scalar. 
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The most common ways to represent a linear code are with either a generator matrix or a 

parity check matrix . 

 

1.2Generator matrix 

 

In Coding Theory, a generator matrix is a matrix whose rows form a basis for a linear code. 

The codewords are all of the linear combinations of the rows of this matrix. That is, the linear 

code is the row space of its generator matrix. 

A  𝑘 × 𝑛 matrix 𝐺 is a generator matrix for some linear code, if the rows of 𝐺 are linearly 

independent; that is, if the rank of 𝐺 equals 𝑘. A linear code generated by a 𝑘 × 𝑛 generator 

matrix 𝐺 is called a [𝑛, 𝑘] code . An [𝑛, 𝑘] code with distance 𝑑 is said to be an [𝑛, 𝑘, 𝑑] code. 

If 𝐺1 is row equivalent to 𝐺 then 𝐺1 also generates the same linear code 𝐶. If 𝐺2 is column 

equivalent to 𝐺, then the linear code 𝐶2 generated by 𝐺2 is not equal to 𝐶, but equivalent to 𝐶. 

 

Standard form of a generator matrix: A generator matrix of an  code [𝑛, 𝑘] C is in standard 

form if G=  [I,A] where I is the k×k identity matrix A is a k×(n-k) matrix. 

 

Example 1.5: Example 1.3: Consider the 3×3 matrix 

𝐻 = (
1 0 0
0 1 0
1 1 1

) 

 

 𝐻 forms a generator matrix for 𝐴2
3 since {100, 010, 111} is a basis of 𝐴2

3 

 

 

 

Example 1.6:consider the 3×5 generator matrix  

𝐺 = (
0 0 1
0 1 0
1 0 0

1 0
1 0
1 0

) 

of rank 3. By interchanging the first row and third row, we obtain another generator matrix, 

 

𝐺1 = (
1 0 0
0 1 0
0 0 1

1 0
1 0
1 0

) =[I3|A] 
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for the same linear code. Note that 𝐺 and 𝐺1 are in reduced row echelon form (RREF). This 

linear code has an information rate of 3/5 (i.e., 𝐺 and 𝐺1 accept all the messages in 𝐴2
3 and 

changes them into words of length 5. The generator matrix 𝐺1 = [𝐼3| A] is said to be in standard 

form, and the code 𝐶 generated by 𝐺 is called systematic code. Not all linear codes have a 

generator matrix in standard form.  

For example, the linear code 𝐶 ={000,100,001,101} has six generator matrice 

 

 G1=[
1 0 0
0 0 1

]      𝐺2=[
0 0 1
1 0 0

]   𝐺3= [
1 0 0
1 0 1

]    𝐺4= [
0 0 1
1 0 1

]   𝐺5= [
1 0 1
1 0 0

]   

𝐺6=[
1 0 1
0 0 1

] 

 

None of these matrices are in standard form. Note that the matrix G’=[
1 0 0
0 1 0

]  
 

 Is in standard form generates the code C’={000,100,010,110} which is equivalent to C. 

 

1.3Parity-check matrix   

 

A matrix 𝐻 is called a parity-check matrix for a linear code 𝐶 of length 𝑛 generated by the 

matrix 𝐺, if the columns of 𝐻 form a basis for the dual code 𝐶 ⊥. The parity-check matrix for a 

given binary linear code can be derived from its generator matrix (and vice versa). If the 

generator matrix for an [n, k] code is in standard form 𝐺 = (𝐼k|𝑃), then the parity check matrix 

is given by, 

                                                                   

 For example, if a binary code has the generator matrix, 

   ,   then its parity check matrix is    

 

If  is a generator matrix of a self-dual code, then . both the generator matrices   
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generate self-dual codes but only G1 is in RREF. If G=[I | B] is a generator of a selfdual code, 

then .  

Proposition 1.1:  

Let  be a parity-check matrix for a linear code C generated by the  k  n matix . Then   

1) The rows of  are linearly independent  

2) The columns of  are linearly independent  

3)  , where  is the  k  k  zero matrix  

4) By permuting columns of  , we obtain another parity-check matrix of    

5) and  

6) is a generator matrix for   with    its parity-check matrix  

7) If   is self-dual with  its generator, then   also generates ;  

8)   has distance  if and only if any set of  rows of is linearly independent, and at least 

one set of  rows of  is linearly dependent.  

  

 

                                                                                            

 

  

1.4 Algorithm for Finding Generator and Parity-Check Matrices  

An algorithm to find generator matrix and parity-check matrix of a linear code can be better 

explained with the following examples.  

Example 1.5 : Let S={01100,01010,11100,00110}  be a subset of  𝐹2
5generating the  

linear code By using the words in S,we define the matrix  
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Note that  

                              

Thus the linear binary code  generated by  has dimension 3; so the matrix  

 

is a generator matrix.  

Now we use some row operations on , to obtain a generator matrix in standard form. Let  

 ,          

be elementary matrices, then  

 

 .  

is a generator matrix in standard form.  

To obtain a parity-check matrix of the linear code, we form the matrix  

 

Form the last two columns of G1; the matrix  
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will be a parity-check matrix associated to the generator matrix G1. 

 

 Example  1.7:  

 be a 

linearly independent set generating . The generator matrix                                                         

 

is in RREF  but not in standard form. We permute the columns of  into order  

1,4,5,7,9,2,3,6,8,10 to form the matrix  

 

  

                             

Then we form the matrix H1 and finally rearrange the rows of 𝐻1in to their natural order to 

form the parity check matrix H  
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The columns of H form a basis for Cꓕ  

Thus it is clear that parity-check matrix can be generated from generator matrix and vice 

versa. 
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2.ENCODING AND DECODING OF LINEAR CODES 
 

2.1 Encoding 

Suppose we have a block code with 𝑛 data bits and 𝑘 extra bits.  The encoding function is 

simply a function which works on the 𝑛 data bits and creates a longer binary string, consisting 

of  𝑛 + 𝑘 bits.  

So the encoder just maps each data string to a longer string of length  𝑛 + 𝑘, which is called a 

codeword. It should also be clear that the encoder should be an injective function, since we do 

not want the same codeword for different data strings. Therefore 𝑘  should not be negative. It 

also does not make sense to have  𝑘 = 0, since it would then just permute the data strings. So 

the problem of designing a block code really lies in choosing the codewords of the bigger set 

wisely. To demonstrate the main concept of what a good block code is, let us suppose we have 

two different data strings 𝑑1 and  𝑑2 which the encoder will respectively encode as codewords 

𝑐1 and  𝑐2. In the next two figures we also assume that each circle in the set represents a binary 

string, and that they are ordered such that two circles are neighbours only if the Hamming 

distance between them is 1.  

 

 

Figure 2.1 

Scenario 1: The Hamming distance of 𝑐1 and 𝑐2 is very small. In other words, the two 

codewords  𝑐1 and  𝑐2 look a lot like each other. This means that when the codeword 𝑐1 goes 

through the noisy channel, a single bitflip can turn 𝑐1 into  𝑐2. So when the decoder gets the 
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binary string 𝑐2, the obvious strategy would be to decode  𝑐2 as the data string  𝑑2 which is 

wrong.  

 

 

Figure 2.2 

 

Scenario 2: The Hamming distance of  𝑐1 and  𝑐2 is big. In this case, even if there is a biflip, the 

corrupted codewords 𝑐̃ will still be close to 𝑐1. The decoder can then use the strategy: Pretend 

that the received binary string is just the codeword which lies closest to it, and then continue 

decoding as normal. In this case, it means the corrupted codeword 𝑐̃  will still be decoded as  

𝑑1, which is the error-correcting ability we want. If the strategy is to only accept binary strings 

which are exactly equal to a codeword, then the decoder would detect the error and we have 

an error-detecting code.   

So we see that if the encoding function distributes the codewords in such a way that the 

Hamming distance for all pairs of codewords is as big as possible, then it will be more difficult 

for one codeword to turn into another codeword and the decoder is thus able to detect or correct 

more errors.  

 

Let 𝐶 be a [𝑛, 𝑘, 𝑑] linear code over the finite field 𝐴𝑞. Each codeword of 𝐶 can represent one 

piece of information so 𝐶 can represent 𝑞𝑘 distinct pieces of information. Once a basis {𝑟1, 𝑟2, 

… . , 𝑟𝑘} is fixed for  𝐶 each codeword  𝑣  or equivalently, each of the 𝑞𝑘 pieces of information 

can be uniquely written as the linear combination  

where  
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Equivalently, we may set  to be the generator  matrix of  whose 𝑖𝑡ℎ row is the vector 𝑟𝑖in 

the chosen basis . Given a vector 𝑢 = (𝑢1. … . 𝑢𝑘 ) ∈ 𝐴𝑞
𝑘. It is clear that   

  

is a codeword in . Conversely, any v∈ 𝐶can be written uniquely as  where  

. Hence, every word 𝑢 ∈ 𝐴𝑞
𝑘  can be encoded as The  

process of representing the elements u of 𝐴𝑞
𝑘 as codewords   in  is called encoding. 

 

Remark 2.1:the encoding rule is even simpler if G is in standard form .Suppose  

G = [Ik |A],where A= (aij) is a k×(n-k) matrix .Then the message vector u is encoded as  

 

 

Where xi=ui 1 ≤ 𝑖 ≤ 𝑘, are the message digits and  

  

 are the check digits. The check digit represents redundancy which has been added to the 

message to give protection against noises.  

 

Example 2.1: Given the message , the encoded code word  

 

is just the sum of the second and fourth row of .  

For a general linear code, we summarize the encoding part of the communication scheme in 

the following diagram  

 



17 

 

Figure 2.3 

 

 

2.2. Decoding  

A code is of practical use only if an efficient decoding scheme can be applied to it. There are 

so many methods to decode an encoded code. But some methods are exclusively for certain 

types of codes. In this section, we discuss a rather simple but elegant nearest neighbor 

(maximum likelihood) decoding  for linear codes, as well as a modification that improves its 

performance when the length of the code is large.  

 

2.2.1. Cosets  

We begin with the notion of a coset. Cosets play a crucial role in the decoding schemes to be 

discussed in this chapter. 

Definition 2.1: Let  be a linear code of length n over 𝐴𝑞
𝑛  , and let 𝑢 ∈ 𝐴𝑞

𝑛,  be any vector of 

length ;we define the coset of C determined by u to be the set 

 

Definition 2.2: A word of least (Hamming weight) in a coset is called a cosetleader.  

Remark 2.2: By considering the vector addition 𝐴𝑞
𝑛 is a finite abelian group, and a linear code 

, of length  is also a subgroup of 𝐴𝑞
𝑛 . Therefore, the coset of a linear code defined 

above coincides with the usual notion of a coset in group theory. 

 

Example 2.2.1 :Let q= 2 and C = {000,101,010,111}.Then, 
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Note that    

C+000 = C+010 = C+101 = C+111 = C 

C+001= C+011=C+100=C+110=𝐴3
2\𝐶 

 

Proposition 2.1: Let  be a [n,k,d]  linear code over the finite field 𝐴𝑞
𝑛    . Then,  

(i) Every vector of 𝐴𝑞
𝑛  , is contained in some coset of   

(ii) For all 𝑢 ∈ 𝐴𝑞.  
𝑛  |𝑐 + 𝑢| = |𝑐| = 𝑞𝑘 

(iii) For all , v∈ 𝐴𝑞
𝑛  ,  implies that   

(iv) Two cosets are either identical or they have empty intersection  

(v) There are different cosets of C  

(vi) For  all u,v∈ 𝐴𝑞
𝑛  ,u-v∈ 𝐶,  if and only if  and vare in the same coset.  

 

2.2.2. Maximum likelihood decoding 

 

The method of decoding a received vector to the closest code vector is called maximum 

likelihood decoding. 

Let  be a linear code. Assume the codeword is transmitted and the word is  

received, resulting in the error pattern (or error string)  

.  

Then  , so the error pattern e and the received word w are in the 
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same coset. Since error patterns of small weight are the most likely to occur, nearest neighbor  

decoding works for a linear code  in the following manner. Upon receiving the word , we 

choose a word  of least weight in the coset   and conclude that was the 

codeword transmitted. 

Definition 2.2 :We define a sphere of rarius ‘r’ about a vector u, denoted by Sr(u) as  

Sr(u) = {v ∈ 𝑉/𝑑(𝑢, 𝑣) ≤ 𝑟} 

Note: Let [x] denote greatest integer less than or equal to x. 

 

Theorem 2.1 :If d the minimum weight of a code C then C can correct t =[ 
𝑑−1

2
] or fewer errors 

and conversely. 

Proof : First we prove that spheres of radius ‘t’ about codewords are disjoint.If possible 

suppose that ,they are not.Then there exist distinct vectors u,w ∈ 𝐶 such that ,                             

 𝑆𝑡(𝑢) ∩ 𝑆𝑡(𝑤) ≠ ∅. 

Sppose   v ∈ 𝑆𝑡(𝑢) ∩ 𝑆𝑡(𝑤) 

Thus      v∈ 𝑆𝑡(𝑢) and v∈ 𝑆𝑡(𝑤) so d(u,v) ≤ 𝑡 and d(v,w) ≤ 𝑡 

Now      d(u,w) ≤ 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑤) 

                           ≤ 𝑡 + 𝑡 

                         =2t 

But        2t≤ 𝑑 − 1  

∴d(u,w)  ≤ 𝑑 − 1 → (1) 

As u,w are distinct ,u-w is a non zero vector.So 

               Wt(u-w) ≥ 𝑑 

ie ;          d(u,w) ≥ 𝑑  

This contrdicts (1) 

 ∴ Our assumption is wrong.. 

So sphere of radius t about the code words are disjoint. 
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If t or fewer errors occur,then the number of the positions in which the received vector v and 

the orginal vector say u differ is less than or equal to t. 

Ie;          d(u,v) ≤ 𝑡 

As sphere of radius t about code words are disjoint ,the received vector v is in a sphere of radius 

t about a unique closet code word u.We decode v to u.So t or fewer errors can be corrected. 

Converse follows immediately. 

Definition 2.3 : -If [
𝑑−1

2
] or fewer errors have occurred ,the received vector v will be ina shere 

of radius [
𝑑−1

2
] about unique code word.If more errors have occurred ,there could be several 

code words at a smallest distance from v.If we need to decode every received vector we could 

choose any one of these and and decode v to it .This is called complete decoding. 

Definition 2.4 : Another decoding technique is to decode only those received messages that 

have [
𝑑−1

2
] or fewer errors and detect the others .This is called incomplete decoding. 

 

Example 2.3: Let q  = 2 and C = {0000,1011,0101,1110}.Decode the following received word: 

W = 1101 w = 1111 

First we write down the standard array of C 

 

i) :  is the fourth coset. The word of least weight (coset leader) in this 

coset is . Hence,  was the most 

liklihood codeword transmitted. 

ii) W = 1111:w+c is the second coset. There are two words of smallest weight, and 

, in this coset. This means that there are two choices for the coset leader. When 

the coset of the received word has more than one possible leader, the approach we take 

for decoding depends on the decoding scheme (i.e., incomplete or complete) used. If 

we are doing incomplete decoding, we ask for a retransmission. If we are doing 
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complete decoding, we arbitrarily choose one of the words of smallest weight, say 

0001,to be the error pattern and conclude that , 

1111-0001 = 1111+0001 = 1110 was a most likely codeword sent. 

 

2.2.2 Syndrome decoding 

 

Decoding schemes  designed for specific codes are more efficient than decoding schemes that 

can be used for any codes .Syndrome decoding is a decoding scheme that can be used for any 

code but it is more efficient than the completing listing method .If we advise a decoding scheme 

for specific code or family of codes it is agood idea to compare it with a syndrome decoding. 

The decoding scheme based on the standard array works reasonably well when the length n of 

the linear code is small, but it may take a considerate amount of time when  is large. Some 

time can be saved by making use of the syndrome to identify the coset to which the received 

word belongs. 

Definition 2.5 : Let C be an [n,k,d] linear code over A  and let H be a parity check matrix for 

C. For any w ∈ 𝐴𝑞
𝑛.The syndrome of w is the word S(w) = wHT ∈ 𝐴𝑞

𝑛. 

Remark 2.3: Strictly speaking, as the syndrome depends on the choice of the paritycheck 

matrix , it is more appropriate to denote the syndrome of   by SH(w) to emphasize this 

dependence. However, for simplicity of notation , the suffix is dropped whenever there is no 

risk of ambiguity.  

Proposition 2.2: Let  be an [n,k,d]  linear code and let H be a parity-check matrix for . For 

u,v ∈ 𝐴𝑞
𝑛 

1) S(u+v) = s(u) + s(v) 

2) S(u) = 0 if and only if u is a code word in C . 

3) S(u) = S(v) if and only if u and v are in the same coset. 

 

Remark 2.4 : 

i) Properties (1) and (3) says that we can identify a coset by its syndrome; conversely, all 

the words in a given coset yield the same syndrome. So the syndrome of a coset is the 
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syndrome of any word in the coset. In other words, there is a one-to-one correspondence 

between the cosets and the syndrome. 

ii) Since the syndromes are in 𝐴𝑞
𝑛−𝑘 there are at most syndromes. 

 

Syndrome decoding scheme : In this scheme ,we choose a set of coset leaders of an [n,k] code 

C and list them with their syndromes.Since all the vectors in a coset have the same syndrome 

this list contains all possible qn-k syndromes.The code itself has the zerovector as coset leader 

.We can then choose vectors of weight 1 as coset leaders . We computer their syndrom 

whenever we get a new syndrome ,we hve a new coset leader .When we we finish with vectors 

of weight 1 and there are more coset leaders,we go on to see if  vectors weight 2 can be coset 

leaders .Thus each time we get a new coset leader of weigt i that gave rise to it.After we 

complete the vectors of weight i ,we continue with vectors of weight i+1 .Until we reach our 

qn-k syndromes.To decode a recived vector w ,compute S(w),locate this in the syndrome list 

.Substract the coset leader u corresponding to this syndrome from w.Decode w as w-u = v. 

 

Definition 2.6:  A table which matches each coset leader with its syndrome is called a 

syndrome look-up table. Sometimes such a table is called a standard decoding array (SDA).  

 

 

Example 2.4:  

      

 

 
  

Table 2.1  

Steps to construct a syndrome look-up table assuming complete nearest neighbor decoding :-  

Step 1: List all the cosets for the code, choose from each coset a word of least weight as coset 

leader .  

         Coset leader  𝑢   syndrome S( 𝑢 )   
        

0000               00   

0001               01   

0010               10   

1000               11   
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𝑢 𝑢 

Step 2: Find a parity-check matrix  for the code and for each coset leader , calculate its 

syndrome  

.  

 

Remark 2.5: For incomplete nearest neighbor decoding, if we find more than one word of the 

smallest weight in Step 1 of the above procedure, place the symbol ‘*’ in that entry of the 

syndrome look-up table to indicate that retransmission is required.  

  

Decoding procedure for syndrome decoding :-  

Step 1: For the received word w, compute the syndrome S(w).  

Step 2: Find the coset leader  next to the syndrome  in the syndrome look-

up table.  

Step 3: Decode  as .  

. Construct a syndrome Example 2.5: Let q = 2 and let  

look-up table and decode (i) 

From the cosets computed in Example 2.4, we choose the words   

and 1000 as coset leaders. Next, a parity-check matrix for C is  

 

Now we construct a syndrome look-up table for   

  

      

  

      Coset leader   syndrome S( )  

        

 

Table 2.2  

  

. The syndrome is  . From Table 2.2 we see that the 

coset leader is 1000. Hence was most likely codeword sent.  

0000             00   

0001             01   

0010             10   

1000             11   
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.The syndrome is . From Table 2.2 we see that the 

coset leader is 0001. Hence 1111 + 0001 = 1110 was a most likely codeword sent.  

 

Theorem 2.2 : Syndrome decoding is a maximum likelihood decoding scheme . 

 

Proof : In syndrome decoding scheme we choose a set of coset leaders of an [n,k] code C and 

list them with their syndromes .Since all the vectors in a coset have the same syndrome there 

are altogether qn-k  possible syndromes.The code contains the zero vector .We can use the  zero 

vector as the coset leader and find its syndrome.We can then choose vectors of weight one as 

coset leader.We compute their syndromes. Whenever we get a new syndrome we have a new 

coset leader .When we finish the coset leader of weight one,we go onto see if vectors of weigt 

two can be cosetleaders.If there are coset leader of weight two we compute their syndrome. 

We continue this process until we reach our qn-k  syndrome. To decode a recived vector w 

,compute S(w),locate this in the syndrome list .Substract the coset leader u corresponding to 

this syndrome from w.Decode w as w-u = v.Thus if w is received we decode w to v for some 

v code with w=u+v,where u is the vector of smallest weight.So it follows that syndrome 

decoding is a maximum likelihood decoding scheme. 

 

Advantages of syndrome decoding: 

Consider a binary [100,60] code .For syndrome decoding we store 240  cosetleaders and their 

syndromes .This is quite a saving of 260 items .It is also easier to search through 240 syndromes 

rather than 260 codewords .If we need a complete decoding algorithm we can decode each 

received vector as described .If our code has minimum weight ‘d’ and t = [ 
𝑑−1

2
 ] , an alternative 

incomplete decoding scheme would be to decode all vectors whose coset leaders have weight 

t or less and detect otherwise. 
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3.SOME IMPORTANT TYPES OF BINARY CODES 

 

 

3.0 Introduction  

There are different types of error correcting codes. While creating and comparing codes 

there are many different aspect which have to be considered before deciding a good code. 

Given a q-ary (n,M,d) code, where n is fixed, the size M is a measure of the efficiency of 

the code, and the distance d is an indication of its error-correcting capability. It would be 

nice if both M and d could be as large as possible, but, as we shall see shortly in this 

chapter, this is not quite possible, and a compromise needs to be struck.  

  

3.1 The main coding problem  

Consider the q-ary code . It is easy to see that 

  

.  

Hence,  

 

This code has the maximum possible information rate, while its relative minimum distance 

is 0.  As the minimum distance of a code is related closely to its error-correcting capability, 

a low relative minimum distance implies a relatively low error-correcting capability. Thus, 

it is clear that for an efficient code, a comprise has to be made between information rate 

and relative minimum distance. 

  

Definition 3.1: For a given code alphabet  of size q (with  > 1) and given values of  

and d, let Aq(n,d)  denote the largest possible size M for which there exists an (n,M,d) code 

over . Thus,  

.  

(n,M,d)  code  that has the maximum size, that is, for which  is called  

an optimal code. 

 

Remark 3.1:  (i) Note that 𝐴𝑞(𝑛, 𝑑) depends only on the size of 𝐴, 𝑛 and 𝑑 . It is independent 

of  𝐴.  
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(ii) The numbers 𝐴𝑞(𝑛, 𝑑)  play a central  role in coding theory, and much effort has 

been made in  determining their values. In fact, the problem of determining the  values 

of 𝐴𝑞(𝑛, 𝑑) is sometimes known as the main coding theory problem.  

Instead of considering all codes, we may restrict ourselves to linear codes and obtain the 

following definition:  

Definition 3.2: For a given prime power 𝑞 and given values of 𝑛 and 𝑑, let 𝐵𝑞(𝑛, 𝑑) denote the 

largest possible size 𝑞𝑘 for which there exists an [𝑛, 𝑘, 𝑑] code over 𝐹𝑞 . Thus,  

𝐵𝑞(𝑛, 𝑑) = 𝑚𝑎𝑥{𝑞𝑘 ∶ 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 [𝑛, 𝑘, 𝑑]𝑐𝑜𝑑𝑒 𝑜𝑣𝑒𝑟 𝐹𝑞 }.  

  

3.2 Bounds in Coding Theory  

We discuss here two well known lower bounds: the sphere-covering bound (for 𝐴𝑞(𝑛, 𝑑)) 

and the Gilbert–Varshamov bound (for 𝐵𝑞(𝑛, 𝑑)) and an upper bound called Hamming 

bound for codes.  

 

Definition 3.3: Let 𝐴 be an alphabet of size  𝑞, where  𝑞 > 1. For any vector 𝑢 ∈ 𝐴𝑞
𝑛  and any 

integer  𝑟 ≥ 0, the sphere of radius 𝑟 and centre 𝑢, denoted 𝑆𝐴(𝑢, 𝑟) , is the set  

{𝑣 ∈ 𝐴𝑞
𝑛

 ∶ 𝑑(𝑢, 𝑣) ≤ 𝑟 }  

 

Definition 3.4: For a given integer q > 1, a positive integer 𝑛 and an integer 

𝑟 ≥ 0, define  𝑉𝑞
𝑛(r)  to be  

   

       

Theorem 3.1: For all integers  𝑟 ≥ 0, a sphere of radius 𝑟 in𝐴𝑞
𝑛 contains exactly𝑉𝑞

𝑛(r)    

vectors, where 𝐴 is an alphabet of size 𝑞 > 1.  

 

vector . We determine the number of vectors v∈ 𝐴𝑞
𝑛

  such that  Proof. Fix a 

 𝑑(𝑢, 𝑣) = 𝑚; i.e., the number of vectors in 𝐴𝑞
𝑛

  of distance exactly 𝑚 from 𝑢. The number of 

ways in which to choose the m coordinates where 𝑣 differs from 𝑢 is given by  .    
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For each coordinate, we have 𝑞 − 1 choices for that coordinate in 𝑣. Therefore, the total number 

of vectors of distance m from 𝑢 is given by ,   

For 0 ≤ 𝑟 ≤ 𝑛, The theorem now follows 

When 𝑟 ≥ 𝑛, 𝑆𝐴(𝑢, 𝑟) =  𝐴𝑞
𝑛 , hence it contains 𝑉𝑞

𝑛 (𝑟)  vectors.  

 

Definition 3.5:  For an integer 𝑞 > 1 and integers 𝑛, 𝑑 such  that  1 ≤ 𝑑 ≤ 𝑛, we have  

  

This is called  sphere-covering bound  for a linear code. 

  

Definition 3.6: Let 𝑛, 𝑘 and d be integers satisfying  2 ≤ 𝑑 ≤ 𝑛 and  1 ≤ 𝑘 ≤ 𝑛. If  

 

∑ (
𝒏 − 𝟏

𝒊
) (𝒒 − 𝟏)𝒊

𝒅−𝟐

𝒊=𝟎

< 𝒒𝒏−𝒌 

 

then there exists an [𝑛, 𝑘] linear code over 𝐹𝑞 with minimum distance at least 𝑑. This is called 

the Gilbert-Varshamov  bound for linear code. 

  

Remark 3.2: The Gilbert–Varshamov bound, a lower bound for 𝐵𝑞(𝑛, 𝑑) (i.e., for linear codes) 

is known since the 1950s. There is also an asymptotic version of the Gilbert  

Varshamov bound, which concerns infinite sequences of codes whose lengths tend to 

infinity. For a long time, the asymptotic Gilbert–Varshamov bound was the best lower 

bound known to be attainable by an infinite family of linearcodes, so it became a sort of 

benchmark for judging the ‘goodness’ of an infinite  sequence of linear codes. Between 

1977 and 1982, V. D. Goppa constructed algebraic-geometry codes using algebraic curves 

over finite fields with many rational points. A major breakthrough in coding theory was 

achieved shortly after these discoveries, when it was shown that there are sequences of 

algebraic-geometry codes that perform better than the asymptotic Gilbert– Varshamov 

bound for certain sufficiently large 𝑞.  

  

An upper bound for 𝐴𝑞(𝑛, 𝑑) that we are going to discuss is the Hamming bound, also known 

as the sphere-packing bound.  
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Definition 3.7:  For an integer 𝑞 > 1 and integers  𝑛, 𝑑 such that 1 ≤ 𝑑 ≤ 𝑛, we have  

  
 

This is called hamming bound or sphere packing bound. 

  

Definition 3.8: A -ary code that attains the Hamming (or sphere-packing) bound, i.e., one 

which has     codewords, is called a perfect code.  

 

  

Remark 3.3: The following codes are obviously perfect codes and are called  trivial perfect 

codes:  

(i) The linear code   

(ii) any C with 

(iii) binary repetition codes of odd lengths consisting of two codewords at distance from 

each other  

  

The Hamming codes and the Golay codes are examples of nontrivial perfect codes. 

Various constructions of nonlinear perfect codes with the same parameters as the q-ary 

Hamming codes have also been found.   

  

3.3 Hamming codes  

Hamming codes were discovered by R. W. Hamming  and  M. J. E. Golay. They form an 

important class of codes – they have interesting properties and are easy to encode and 

decode. While Hamming codes are defined over all finite fields Fq, we begin by discussing 

specifically  the binary Hamming codes. These codes form a special case of the general    

q-ary Hamming codes, but  because  they can be described more simply than the  general 

q-ary Hamming codes, and because they are arguably the most interesting Hamming 

codes, it is worthwhile discussing them separately from the other Hamming codes.  

 

Definition 3.8: Let  . A binary linear code of length  n  , with paritycheck 

matrix  whose columns consist of all the non zero vectors of   , is called a binary 

Hamming code of length . It is denoted by . The dual of the binary 
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Hamming code 𝐻𝑎𝑚(𝑟, 2) is called a binary simplex code. It is sometimes denoted by    

𝑆(𝑟, 2).  

 

Remark 3.4: (i) The order of the columns of 𝐻 has not been fixed in definition. Hence, 

for each r ≥ 2, the binary Hamming code 𝐻𝑎𝑚(𝑟, 2) is only well defined up to equivalence 

of codes.  

(iii) Note that the rows of 𝐻 are linearly independent since 𝐻 contains all the 𝑟 columns of 

weight 1 words. Hence, 𝐻 is indeed a parity-check matrix.  

 

Proposition 3.1: ( Properties of the Binary Hamming Codes )  

(i)All the binary Hamming codes of a given length are 

equivalent.  

(ii) The dimension of  𝐻𝑎𝑚(𝑟, 2)  is 𝑘 = 2𝑟 − 1 − 𝑟 .  

(iii)The distance of 𝐻𝑎𝑚(𝑟, 2) is 𝑑 = 3, hence 𝐻𝑎𝑚(𝑟, 2) is exactly single errorcorrecting.  

(iv) Binary Hamming codes are perfect codes.  

  

Since 𝐻𝑎𝑚(𝑟, 2) is perfect single-error-correcting, the coset leaders are precisely the 2𝑟  

vectors of length 𝑛 of weight ≤ 1. Let 𝑒𝑗 denote the vector with 1 in the 𝑗th coordinate and 

0 elsewhere. Then the syndrome of 𝑒𝑗 is just  𝑒𝑗𝐻𝑇, i.e., the transpose of the 𝑗th column of 

𝐻. Hence, if the columns of 𝐻 are arranged in the order of increasing binary number, the 

decoding is given by:  

Step 1: When 𝑤 is received, calculate its syndrome 𝑆(𝑤) = 𝑤𝐻𝑇.  

Step 2: If  𝑆(𝑤) = 0, assume w was the codeword sent.   

Step 3: If  𝑆(𝑤) ≠ 0, then 𝑆(𝑤) is the binary representation of 𝑗, for some 1 ≤ 𝑗 ≤  2𝑟 − 1. 

Assuming a single error, the word 𝑒𝑗 gives the error, so we take the sent word to be  𝑤 − 

𝑒𝑗 (or, equivalently,  𝑤 + 𝑒𝑗).  

 

Example 3.1: 𝐻𝑎𝑚(3, 2) is a Hamming code of length 7 with a parity-check matrix  
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Definition 3.9: Let r ≥ 2. A q-ary linear code, whose parity-check matrix H  has the 

property that the columns of H are made up of precisely one nonzero vector from each 

vector subspace of dimension 1 of  𝐴𝑟𝑞 , is called a  q-ary Hamming code, often denoted 

as 𝐻𝑎𝑚(𝑟, 𝑞). The dual of the q-ary Hamming code 𝐻𝑎𝑚(𝑟, 𝑞) is called a q-ary simplex 

code. It is sometimes denoted by 𝑆(𝑟, 𝑞).  

  

Remark 3.5: (i) when q = 2, the code defined here is the same as the Binary Hamming Code  

(ii) An easy way to write down a parity-check matrix for 𝐻𝑎𝑚(𝑟, 𝑞) is to list as columns all 

the nonzero r -tuples in   whose first nonzero entry is 1.  

Example 3.2: 𝐻𝑎𝑚 (2,3) is an example of 3-ary Hamming code with parity matrix  

  

 

 

3.4 Golay codes   

The Golay codes were discovered by M. J. E. Golay in the late 1940s. The (unextended) 

Golay codes are examples of perfect codes. It turns out that the Golay codes are essentially 

unique in the sense that binary or ternary codes with the same parameters as them can be 

shown to be equivalent to them.  

 

Definition 3.10:  Let 𝐺 be the 12 × 24 matrix 𝐺 = (𝐼12|𝐴), where is 𝐼12 the 12 × 12 identity 

matrix and 𝐴 is the 12 × 12 matrix  
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The binary linear code with generator matrix G is called the extended binary Golay code and 

will be denoted by 𝐺24.  

 

Proposition 3.3: (Properties of the extended binary Golay codes)  

(i) The length of 𝐺24 is  and its dimension is .  

(ii) A parity-check matrix for 𝐺24 is the  matrix  

𝐻 = (𝐴|𝐼12) 

(iii) The code 𝐺24 is self-dual, i.e.,  𝐺⊥ = 𝐺24   

(iv) Another parity-check matrix for 𝐺24 is the 12 ×24 matrix  

  

(v) Another generator matrix for 𝐺24 is the 12 ×24 matrix  

  

(vi) The weight of every codeword in 𝐺24 is a multiple of 4.  

(vii) The code 𝐺24 has no codeword of weight 4, so the distance of 𝐺24 is  

 
(viii) The code 𝐺24 is an exactly three error-correcting code.  

  

 

Definition 3.11: Let   be the  matrix  

 ,  

Where 𝐼12 is the  identity matrix and  is the 12 × 11 matrix obtained from the 

matrix  by deleting the last column of . The binary linear code with generator matrix 𝐺̂ 

is called the binary Golay code and will be denoted by 𝐺23. 
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Remark 3.6: Alternatively, the binary Golay code can be defined as the code obtained from 

G24 by deleting the last coordinate of every codeword.  

 

Proposition 3.3:  

(i) The length of G23 is 23 and its dimension is 12.  

(ii) A parity-check matrix for G23 is the 11 × 23 matrix  

                                             𝐻̂ = (𝐴̂𝑇|𝐼11). 

(iii) The extended code of 𝐺23 is 𝐺24.   

(iv) The distance of  𝐺23  is .  

(v) The code 𝐺23 is a perfect exactly three-error-correcting code.  

  

Definition 3.12: The extended ternary Golay code, denoted by 𝐺12, is the ternary linear code 

with generator matrix G = (I6|B), where B is the 6 × 6 matrix. 

  

  

 

Remark 3.6: Any linear code that is equivalent to the above code is also called an extended 

ternary Golay code.  

As already mentioned above Hamming codes and Golay codes form a very important class 

of binary codes and they have many applications. A detailed study on perfect codes led to 

the following theorem, proof of which requires an advanced knowledge in coding theory.  

  

Theorem 3.1: ( .)   

 When q ≥ 2 is a prime power ,a nontrivial perfect code over Fq must have the same 

parameters as one of the Hamming or Golay codes. 
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3.5 Applications of linear codes  

There are many applications of coding theory in the modern world. In computer science, 

where coding theory originated, powerful error detection and correction codes are used 

in the transmission of digital data.  

 

  

3.6.1 Hamming codes and DRAM  

 

Traditional DRAM (dynamic random-access memory) uses Hamming codes for error 

correction purposes. However, hamming codes have a minimum distance 𝑑 = 3 which 

enables them to correct only one bad bit per codeword. As computers have progressed 

from 8-bit machines to 16-bits, 32-bits or even 64-bits, the ability to correct only a single 

bit error introduces the increasing possibility of data corruption. In the presence of ever-

increasing data throughput even extended Hamming codes (obtained from 𝐻𝑎𝑚 (2,3) by 

adding a parity check coordinate and having 𝑑 = 4 seem to fall short of the required error 

correction.  

 

3.6.2 Coding Theory and Genetic Research 

  

There are many new frontiers of science that coding theory is finding applications in. One 

such application which arouses great excitement is the use of coding theory in the study 

of evolution and genetic mutations. Genetic information in the form of DNA is taken as 

input, transmitted via the process of replication and then ultimately output as amino acid 

proteins. Errors are introduced by fluxuations in heat, radioactivity and other factors. One 

model used in an attempt to validate the processes was a (𝑛, 𝑘) block code which outputted 

a parity check code. Based on the known genetic bases, codewords of length 𝑛 = 5 and   

𝑛 = 8 were developed and evaluated based on a minimum distance (nearest neighbour) 

decoding scheme. The following figure describes the proposed structure of the 

encoding/decoding process:  



34 

 

  

(Fig 3.1)  

 

3.6.3 Photographs from spacecrafts  

The codes initially used for transmitting photographs from spacecrafts were first order 

Reed Muller codes, which can be constructed as orthogonal extended Hamming codes. 

But later Golay codes was used. Hundreds of colour pictures of Jupiter and Saturn in the 

1979, 1980, 1981 fly-bys of Voyager 1 and 2 spacecraft would be transmitted within a 

constrained telecommunication bandwidth. Colour image transmission requires three 

times the amount of data as black and white images and Golay (24,12,8) code was used 

for this purpose. This Golay code is only triple-error correcting, but it could be transmitted 

at a much higher rate than Hadamard code (non-linear) that was used during Mariner 

mission.  

  

Above mentioned are some of the thousands of applications of linear ECC. Apart from 

linear codes, there are several families of nonlinear codes that are well known and 

important in coding theory. Non-linear codes are used to obtain the largest possible 

number of codewords with a given minimum distance. 
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4.CONCLUSION 
 

Coding Theory is concerned with successfully transmitting data through a noisy channel 

and correcting errors in corrupted messages. This project is giving a brief introduction to 

linear Error Correcting Codes (ECC) whilst only assuming basic linear algebra. It contains 

a rigorous introduction to the theory of block codes.  In this study, different performance 

measurement parameters which makes one class of ECC different from other classes is 

explained. Various encoding and decoding techniques which helps in the efficient use of 

linear codes and perfect codes are also discussed. Giving more focus to Binary Hamming 

Codes and Golay Codes, which constitute a very important class of linear ECC, some of 

the major applications of linear ECC are also discussed in this project. In essence, from 

this project we can understand that linear Error Correcting Codes play a vital role in 

controlling and correcting errors which are caused due to different noises in the channel.  

Error control coding applications have grown rapidly in the past several years in various 

field of communication and information storage mechanism. There are number of 

techniques of error correction based on applied mathematics which correct various types 

of errors. These codes have some limitations in mathematical or practical considerations 

or in other ways. It is impossible to correct all the errors but these errors can be minimized. 

Still no error correcting code is available which can correct all the random errors and burst 

errors. When number of errors was increased designed codes turn out to be inefficient. 

Small error correction codes with desired correction capabilities can be easily developed 

but with large error correction capability; developing a code is real practical problem. 

Now future work can be done on such error correcting code which would be capable to 

correct the errors with high probability.  
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