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ABSTRACT 
 

In Mathematics, a module is a generalization of the notion of vector space, where in the 

field of scalars is replaced by a ring. Much of the theory of modules consists of extending 

as many of the desirable properties of vector spaces as possible to the realm of modules 

over a well-behaved ring such as principal ideal domain. However, modules can be quite 

a bit more complicated than vector spaces. In this project, the first chapter deals with 

rings and vector space. The second chapter discusses about modules, sub modules and 

module homomorphism. In the third chapter we study about exact sequences and different 

types of modules. And the fourth chapter discusses about modules of finite length.  

  



1 

 

 

INTRODUCTION 

 
In a vector space, the set of scalars is a field acts on the vectors by scalar multiplication, 

subject to certain axioms such as distributive law. In a module, the scalars need only be 

ring. So the module concept represent a significant generalisation. In commutative 

algebra, both ideals and quotient rings are modules, so that many arguments about ideals 

and quotient ring can be combined into a single argument about modules. In non- 

commutative algebra, both ideals and quotient rings are modules, so that many arguments 

about ideals or quotient rings can be combined into single argument about modules. In 

commutative algebra, the distinction between left ideals, and modules become more 

pronounced, though some ring-theortetic conditions can be expressed either about left 

ideals or left modules. 

The general notion of a module was first encountered in the 1860’s till 1880’s in the work 

of R.Dedekind and L.Kronecker devoted to the arithmetic of algebra number and function 

fields. At the same time research on finite dimensional associative algebras, in particular, 

groups algebra of finite groups led to the study of ideals of ring which is non 

commutative. At first the theory of module was developed primarily as a theory of ideals 

of a ring. Only later it was observed that it was more convenient to formulate and prove 

many results in terms of arbitrary modules and not just ideals.  
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CHAPTER – 1 

BASIC CONCEPTS 

This chapter discuss some basic definitions and results  

that are necessary to develop this project. 
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1.1 DEFINITION  

An algebraic structure< 𝐺,∗>, where G is a non empty set and * is a binary operation on 

G , is called a group if it satisfies the following properties.  

• Associative,(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) ,for all a,b,c 𝜖 G 

• Existence of identity. There exists an element a ϵG, there exists an identity such 

that a 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 for all a 𝜖 G.  

• Existence of inverse. For each element a 𝜖 G, there exist an element a-1 𝜖 G such 

that 𝑎 ∗ 𝑎 − 1 = 𝑒 = 𝑎 − 1 ∗ 𝑎.  

 

1.2 DEFINITION  

A group < 𝐺,∗>,  is said to be abelian or commutative if its binary operation is 

commutative ie, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 for all a, b 𝜖 G.  

 

1.3 DEFINITION  

Let G be a group and H a subgroup of G where 𝐻 = {ℎ1, ℎ2, … . }. Then the set 

{ℎ1𝑎, ℎ2𝑎, … . . } denoted by Ha is called the right cosets of H in G generated by a and the 

set {𝑎ℎ1, 𝑎ℎ2, … . } denoted by aH is called the left coset of H in G generated by a. 

1.4 DEFINITION  

A partially ordered set is a non-empty set A together with relation R on A×A (called 

partially ordering of A) which is reflexive, transitive and antisymmetric. 

 

1.5 Zorn’s Lemma  

If A is a nonempty partially ordered set such that every chain in A has an upper bound in 

A, then A contains A contains a maximal element.  

 

1.6 DEFINITION  

Let G be a group, G is said to be cyclic if there exists an ϵ G such that every element X of 

G, can be written in the form an for some n 𝜖 Z. The cyclic group generated by a is 

denoted by < 𝑎 >.  
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1.7 THEOREM  

Every finite cyclic group is isomorphic to the additive group Z and every finite cyclic 

group of order m is isomorphic to the additive group 𝑍𝑚. 

1.8 THEOREM  

             Let H be a subgroup of a group G.  

• G is the union of right (resp. left) cosets of H in G. 

• Two right (resp. left) cosets of H in G are either disjoint or equal.  

• For every a, b 𝜖 G, Ha = Hb ⇔ ab-1 𝜖  H and aH = bH iff 

a-1b 𝜖 H. 

1.9 DEFINITION  

             A ring is non empty set R together with two binary operator addition (+) and 

multiplication(.) such that  

• (𝑅,+) is an abelian group  

• (𝑅, . ) is a semigroup  

• (𝑎𝑏). 𝑐 = 𝑎. (𝑏𝑐) for all a, b, c 𝜖 R [associative law]  

• 𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐  [left distributive law] and  

• (a + b).c = a. c +b. c [right distributive law]  

 

1.10 DEFINITION  

             A non-zero element a in a ring R is said to be a left (resp. right) zero divisor if 

there exists a non-zero b 𝜖 R such that a. b=0 [resp. b. a = 0]. A zero divisor is an 

element of R which is both left and right zero divisor. 

1.11 DEFINITION 

             A commutative ring with identity IR ≠ 0 and no zero divisors is called an 

integral domain.  

 

1.12 DEFINITION  

            A ring with identity I0 ≠ 0 in which every non zero elements has a units is 

called division ring.  
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1.13 DEFINITION           

    A ring with unity which is commutative in which every non zero element has a 

multiplicative inverse is called field.  

  

1.14 DEFINITION  

             Let R be a ring and S a nonempty subset of R, that is closed under the 

operation addition and multiplication in R. If S is itself a ring under these operation is 

called a subring of R.  

 

1.15 DEFINITION  

             A subring S of a ring R is called a  

• Right ideal of R, if a 𝜖 S, r 𝜖 R ⇒ ar 𝜖 S  

• Left ideal of R, if a 𝜖 S, r 𝜖 R ⇒ ra 𝜖 S 

• Both sided ideal or simply an ideal, if S is a right ideal as well as left ideal 

  ie, if aϵ S, r 𝜖 R ⇒ ar 𝜖 S and ra 𝜖 S. 

 

1.16 DEFINITION  

            Let M be an R-Module and I be a two sided ideal contained in {a 𝜖 R/ax = 0, 

for all x 𝜖 M}, the annihilator of M. Clearly Ann(M) is an ideal of R. 
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CHAPTER – 2 

MODULE 

Here we introduce the concept of Modules, 

 Submodules and module homomorphism. 
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2.1 DEFINITIONS AND EXAMPLES 

2.1.1 Left Module: 

Let R be a ring. A left R-module M is an abelian group (M, +) together with a map R x M 

→ M  

(The image of (a, x) being denoted by ax is called the scalar multiplication or the structure 

map) such that 

1. 𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 , Ɐ a 𝜖 R and x, y 𝜖 M 

2. (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥 , Ɐ a, b 𝜖 R and x 𝜖 M 

3. (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥) , Ɐ a, b 𝜖 R and x 𝜖 M 

Elements of R are called scalars. 

 

2.1.2 Unitary Module: 

A left R- module is said to be unitary left R- module if 1.x = x, Ɐ x 𝜖 M. 

 

2.1.3 Right Module: 

An abelian group (M, +) is called a right module if there is a map from  

M x R → M denoted by (x, a) → xa such that 

1. (𝑥 + 𝑦)𝑎 = 𝑥𝑎 + 𝑦𝑎 Ɐ, a 𝜖 R and x, y 𝜖 M 

2. 𝑥(𝑎 + 𝑏) = 𝑥𝑎 + 𝑥𝑏 , Ɐ a, b 𝜖 R and x 𝜖 M 

3. 𝑥(𝑎𝑏) = (𝑥𝑎)𝑏 , Ɐ a, b 𝜖 R and x 𝜖 M 

 

2.2 EXAMPLES OF MODULES 

1. If M is a vector space over the field R, then M is an R- module. 

2. Every ring R is an R-module over itself.  

3. Every additive abelian group is a module over the ring of integers. 

4. If M = 𝑀𝑚𝑛(𝑅) be the set of all 𝑚 × 𝑛 matrices with entries in R. Then M is an R- 

module, where addition is ordinary matrix addition and multiplication of each 

entry A by C. 

 

2.3 DEFINITION  

Let A and B be modules over a ring R. A function f: A→ B is an R- module 

homomorphism provided that Ɐ a, c 𝜖 A and r 𝜖 R.  
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1. 𝑓(𝑎 + 𝑐) = 𝑓(𝑎) + 𝑓(𝑐) 

2. 𝑓(𝑟𝑎) = 𝑟𝑓(𝑎) 

 

2.4 DEFINITION  

A homomorphism f: A→B of R -modules. A and B is called  

• A monomorphism if f is injective  

• A epimorphism if f is surjective  

• An isomorphism if f is bijective  

 

2.5 PROPOSITION  

For an abelian group M, let endz(M) be the ring of all endomorphism of M. Let R be any 

ring. Then we have the following  

1. M is a left R module iff there exists a homomorphism of ring 𝜓: 𝑅 → 𝐸𝑛𝑑𝑧(𝑀). 

2. M is R unitary iff 𝜓(1𝑅) = 𝑖𝑑𝑀. 

3. M is a right R module iff there exists an anti-homomorphism of rings  

𝜓′: 𝑅 → 𝐸𝑛𝑑𝑧(𝑀). 

2.6 DEFINITION  

Let R be a ring. Let A be an R- module. A non-empty subset B of A is called an R- 

submodule of A if 

1. B is an additive subgroup of A. ie, x, y 𝜖 B→ x-y 𝜖 B. 

2. B is closed for scalar multiplication. ie, x 𝜖 B, a 𝜖 R→ xa 𝜖 B.  

 

2.7 DEFINITION  

A subset S = {𝑎𝑖: 𝑖𝜖I} of a module M spans if every element of M can be written as a 

finite sum ∑ (𝑟𝑖, 𝑎𝑖)𝑖 . M is a finitely generated, written as 𝑓𝑔, if M has a finite spanning 

set. 
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2.8 PROPOSITON  

The submodule S generated by N and K is the sub module 𝑁 + 𝐾 = {𝑥 + 𝑦|𝑥𝜖𝑁, 𝑦𝜖𝐾} 

Proof  

Clearly, 𝑁 + 𝐾 is a submodule of M, 𝑁 ⊂  𝑁 + 𝐾 and  

𝐾 ⊂  𝑁 + 𝐾  

So that 𝑆 ⊂  𝑁 + 𝐾.  

Conversely for any xϵ N, 𝑦 𝜖𝐾 we have 𝑥, 𝑦 𝜖 𝑆  

So that 𝑥 + 𝑦 𝜖 𝑆  

Thus 𝑁 + 𝐾 𝜖𝑆 and 𝑆 =  𝑁 + 𝐾 . 

 

2.9 DEFINITION  

If x ϵ M, then 𝑅𝑥 =  {𝑟𝑥 ;  𝑟 𝜖 𝑅} is called the cyclic subgroup generated by X. M is 

cyclic module if M = Rx, for some x in M.  

 

2.10 THEOREM  

Let B be a subgroup of a module A over a ring R then the quotient group A/B is an R-

module with the action of R on 𝐴/𝐵 given by 𝑟(𝑎 + 𝐵)  =  𝑟𝑎 + 𝐵 for all 𝑟𝜖𝑅, 𝑎𝜖𝐴. The 

map  

𝜋: 𝐴 →  𝐴/𝐵 given 𝑏𝑦 𝑎 →  𝑎 + 𝑏 is an R-module epimorphism with kernel B. 

Proof  

Since a is an additive abelian group, B is normal subgroup and A/B is well defined 

abelian group.  

If 𝑎 + 𝐵 =  𝑎’ + 𝐵, then 𝑎 −  𝑎’ 𝜖𝐵, since B is a submodule  

𝑟𝑎 –  𝑟𝑎’ = 𝑟 (𝑎 − 𝑎’) for all 𝑎 𝜖 𝐵, 𝑟 𝜖 𝑅. Thus 𝑟𝑎 + 𝐵 =  𝑟𝑎’ +  𝐵, because two left 

cosets of B in A are same and the action of R on A/B is well defined.  

Consider the map 𝜋: 𝐴 →  𝐴/𝐵 given by 𝑎 →  𝑎 + 𝐵  

First, we shall prove that the mapping 𝜋 is well defined.  

ie., if 𝑎, 𝑏 𝜖 𝐴 and 𝑎 + 𝐵 =  𝑏 + 𝐵 then 𝜋(𝑎)  =  𝜋(𝑏)  

We have,  

𝑎 + 𝐵 =  𝑏 + 𝐵 ⇒  𝑎 −  𝑏𝜖 𝐵  
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⇒  𝜋(𝑎 − 𝑏)  =  𝑒, the identity of A/B 

⇒  𝑎 − 𝑏 + 𝐵 =  𝑒  

⇒  𝑎 + 𝐵 =  𝑏 +  𝑒 +  𝐵  

⇒  𝑎 +  𝐵 =  𝑏 +  𝐵  

⇒  𝜋(𝑎)  =  𝜋(𝑏)  

𝜋 is well defined.  

Let 𝑎 + 𝐵 be any element of A/B  

Now a 𝜖 A and we have 𝜋 (𝑎)  =  𝑎 + 𝐵 

Therefore, 𝜋 is onto A/B  

For 𝑎, 𝑐 𝜖 𝐴 and 𝑟 𝜖 𝑅  

𝜋 (𝑎 + 𝑐)  = 𝑎 +  𝑐 +  𝐵  

                     =  𝑎 + 𝐵 + 𝑐 +  𝐵  

𝜋 (𝑎 + 𝑐)  =  𝜋 (𝑎)  +  𝜋 (𝑐)  

𝜋 (𝑟𝑎)  =  𝑟𝑎 +  𝐵  

               =  𝑟(𝑎 + 𝐵)  

𝜋 (𝑟𝑎)  =  𝑟 𝜋 (𝑎) .  

Thus, 𝜋 is an R-module epimorphism with kernel B.  

 

2.11 DEFINITION  

An R module A is said to be the direct sum of two of its submodule A1 and A2 written as 

A = A1 ⨁ A2. If each element of A is uniquely expressed as sum of an element A1 and an 

element of A2.  

 

2.12 PROPOSITION  

Suppose M and N are sub module of a module P over R then 𝑀 ∩𝑁 =  0 iff every 

element 𝑍 𝜖 𝑀 + 𝑁 can be uniquely written as 𝑍 =  𝑥 + 𝑦 with 𝑥 𝜖 𝑀 and 𝑦 𝜖 𝑁. 

Proof  

Suppose 𝑀 ∩𝑁 =  0  

Say 𝑍 =  𝑥 +  𝑦 =  𝑥’ +  𝑦’ ;  𝑥, 𝑥’ 𝜖 𝑀 𝑎𝑛𝑑 𝑦 , 𝑦’ 𝜖 𝑁  

Then 𝑥 –  𝑥’ =  𝑦’ –  𝑦 𝜖 𝑀 ∩ 𝑁 =  0  

⇒  𝑥 =  𝑥’ 𝑎𝑛𝑑 𝑦 =  𝑦’  
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Hence it is unique.  

Conversely, suppose that every element of M +N has a unique decomposition.  

Let 𝑍 𝜖 𝑀 ∩ 𝑁  

Now 0 =  𝑧 + (−𝑧)  =  0 +  0 𝜖 𝑀 + 𝑁 , 𝑧 𝜖 𝑀 , −𝑧 𝜖 𝑁 

By uniqueness we get z = 0  

ie., 𝑀 ∩ 𝑁 =  0.  

 

2.13 REMARK  

If M = Ra and N = Rb are cyclic, then 𝑀⨁𝑁 is generated by the two elements 

(𝑎, 0) 𝑎𝑛𝑑 (0, 𝑏). In general, if Mi is generated by NJ element for 1 ≤  𝑖 ≤ 2, then 

𝑀1 ⨁ 𝑀2 is generated by N1 +N2 element.  

 

2.14 PROPOSITION  

An R- module 𝑀 =  𝑀1 ⨁𝑀2 ⨁… ⨁𝑀𝑛 iff  

1. 𝑀 =  𝑀1  +  𝑀2  + ⋯+𝑀𝑛 

2. 𝑀𝑖𝑛 ( 𝑀1  +  𝑀2  + ⋯𝑀𝑖−1 +⋯+𝑀𝑛)  =  0 

  

Proof  

Suppose 𝑀 = 𝑀1 ⨁𝑀2 ⨁… ⨁𝑀𝑛  

Then clearly (1) is true.  

To prove (2)  

Suppose x is in the intersection on LHS  

So that 𝑥 𝜖𝑀𝑖 and  𝑥 = 𝑦1 + 𝑦2 +⋯+ 𝑦𝑖−1 + 𝑦𝑖 +⋯+ 𝑦𝑛; 𝑦𝑗 𝜖 𝑀𝑗, 𝑗 ≠ 1  

Since 𝑥 =  0 +  0 + ⋯ .+0 +  𝑥 + 0 +⋯ . . +0, with x in the i th place.  

By uniqueness we have x = 0  

Conversely assume condition (1) and (2)  

By (1), each x ϵM can be expressed as  

𝑋 =  𝑥1 + 𝑥2 +⋯+ 𝑥𝑛, 𝑥𝑖𝜖𝑀𝑖   

Suppose  𝑥 = 𝑦1 + 𝑦2 +⋯+ 𝑦𝑖−1 + 𝑦𝑖 +⋯+ 𝑦𝑛; 𝑦𝑗 𝜖 𝑀𝑗 

Then 0 =  (𝑥1 – 𝑦1)  + (𝑥2 – 𝑦2)  + ⋯ . . +(𝑥𝑖 – 𝑦𝑖)  + ⋯ . . +(𝑥𝑛– 𝑦𝑛)  

So that 𝑥𝑖 –  𝑦𝑖 𝜖 𝑀𝑖 and  
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𝑥𝑖 –  𝑦𝑖 =  [ (𝑥1 – 𝑦1) + (𝑥2 – 𝑦2) + ⋯ .+(𝑥𝑖 − 1–𝑦𝑖 − 1) + (𝑥𝑖 + 1–𝑦𝑖 + 1)…+

 (𝑥𝑛 – 𝑦𝑛)]𝜖 𝑀1  +  𝑀2  + ⋯𝑀𝑖−1 +𝑀𝑖 +⋯+𝑀𝑛  

Hence by (2), 𝑥𝑖 –  𝑦𝑖 =  0  𝑖𝑒, 𝑥𝑖 =  𝑦𝑖 ;  1 ≤  𝑖 ≤ 𝑛  

Thus 𝑀 =  𝑀1 ⨁𝑀2 ⨁… . .⨁𝑀𝑛. 

 

2.15 REMARK  

 ∏ 𝑨𝒊𝒊𝝐𝑰  is called the direct product of the family of R – modules {𝐴𝑖 /𝑖𝜖𝐼}. 

 

2.16 THEOREM  

If R is a ring {𝐴𝑖 |𝑖𝜖 𝛪}, a family of R module, C an R –module and  

{𝜓𝑖 ∶  𝐶 →  𝐴𝑖 | 𝑖𝜖𝛪} a family of R- module homomorphism, then there is a unique R 

Module homomorphism 𝜓𝑖 ∶  𝐶 →  ∏ 𝑨𝒊𝒊𝝐𝑰  such that 𝛱𝑖 𝜓 =  𝜓1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝜖 𝑰. 

∏ 𝑨𝒊𝒊𝝐𝑰 is uniquely determined upto isomorphism by this property. In otherwords ∏ 𝑨𝒊𝒊𝝐𝑰  

is product in the category of R-modules. 

  

Proof  

Let {𝐴𝑖 / 𝑖𝜖 𝛪} be a family of R –module and { 𝜓𝑖 ∶  𝐶 →  𝐴𝑖 | 𝑖𝜖 𝐼} a family of  

R- module homomorphism, then by theorem there is a unique group homomorphism  

𝜓𝑖 ∶  𝐶 →  𝛱𝑖 𝜖 𝐼 𝐴𝑖 which has the desired property given by 𝜓(𝑐)  =  {𝜓𝑖(𝑐) }. 

Since each 𝜓𝑖 is an R- module homomorphism.  

𝜓(𝑟𝑐)  =  { 𝜓𝑖(𝑟𝑐)}  =  {𝑟𝜓𝑖(𝑐) }  =  𝑟{𝜓𝑖(𝑐)} 

∴  𝜓(𝑟𝑐)  =  𝑟 𝜓(𝑐).  

And 𝜓 is an R – module homomorphism. 

Thus ∏ 𝑨𝒊𝒊𝝐𝑰  is a product in the category of R-module and therefore determined upto 

isomorphism. 
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CHAPTER – 3 

TYPES OF MODULES 

This chapter discuss about different types of modules 

 

 

  



14 

 

 

3.1 DEFINITION  

An R- Module A is called a free module if A has a basis B. That is, linearly independent 

subset B of A such that A is spanned by B over R.  

 

3.1.1 REMARK  

An R- module-Rx is called free if 𝑎𝑛𝑛 (𝑥)  = 0. An R module M is called free if it can be 

expressed as a direct sum M ⨁Σ M𝛼, where each M𝛼 is a free cyclic R – module 𝛼.  

 

3.1.2 EXAMPLE  

For any ring R with unity, the left R- module is free with basis {1} or {u}, u is any unit in 

R.  

 

3.2 THEOREM  

A Vector space is a free module.  

Proof  

Let V be a vector space over a division ring D. Let ℱ be the family of all linearly 

independent subjects of V. 

Let ℱ =  {𝐴 ⊆  𝑉/A is linearly independent over D} We can see that ℱ ≠  𝜙, because 

ℱ contain all non-zero elements of V.  

Partially order ℱ under set inclusion and apply zorn’s lemma to get a maximal element B 

in ℱ.  

Claim: B is a basis for V.  

We have to show that B spans V. If not, then there exists a v ϵ V such that v is not a linear 

combination of any finite subset of B.  

Now 𝐵 ‘ =  𝐵 ∪ {𝑉} is a linearly independent, because  

𝛼𝜈 + ∑𝛼𝑖𝑏𝑖

𝑟

𝑖=1

=  0  

⇒  𝛼 ≠  0  

⇒ 𝜈 =  − 𝛼 [𝛼1𝑏1 + 𝛼2𝑏2 +⋯+ 𝛼𝑟𝑏𝑟]  

= −𝛼−1𝛼1𝑏1 − 𝛼
−1𝛼2𝑏2 −⋯− 𝛼

−1𝛼𝑟𝑏𝑟  

⇒  𝑉 𝜖 𝑆𝑝𝑎𝑛 (𝐵) , which is a contradiction.  
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Thus 𝐵’ 𝜖 ℱ  which contradicts the maximality of B.  

Hence B spans V over D. 

 

3.3 PROPOSITION  

Suppose ℱ ∶ 𝑚 →  𝑁 is an onto module map, and N and 𝐾 =  𝐾𝑒𝑟 𝑓 are free of 

respective rank m and n. then m is free of respective rank m +n.  

Proof  

Let { ℱ (𝑏1), … , ℱ (𝑏𝑚)} and 𝐵 = { 𝑏1
′ , … , 𝑏𝑛

′  }be the bases of N and K respectively.  

We have to show that 𝐵 =  {𝑏1, … , 𝑏𝑚, 𝑏1} is a base of M.  

First, we have to show that B is a spanning set, for any a in M, we have ri in R such that 

ℱ(𝑎)  =  𝛴 𝑟𝑖ℱ(𝑏𝑖)  = ℱ(𝛴𝑟𝑖𝑏𝑖)  

𝑆𝑜 𝑡ℎ𝑎𝑡  ℱ (𝑎 – 𝛴𝑟𝑖𝑏𝑖)  =  0  

⇒  𝑎 –  𝛴𝑟𝑖𝑏𝑖 𝜖 𝐾  

and thus has the form 𝛴𝑟𝑖
′𝑏𝑖
′  

Hence 𝑎 = 𝛴𝑟𝑖𝑏𝑖 + 𝛴𝑟𝑖
′𝑏𝑖
′  = 0  

Thus 0 = ℱ (𝛴𝑟𝑖𝑏𝑖)  + ℱ(𝛴𝑟𝑖
′𝑏𝑖
′)  = ℱ(𝛴 𝑟𝑖𝑏𝑖)  +  0 =  𝛴 𝑟𝑖ℱ(𝑏𝑖)  

Implying each 𝑟𝑖 =  0  

Hence the theorem. 

 

3.4 DEFINITION 

A module P is projective if and only if it satisfies one of the following equivalent 

conditions: 

• for every surjective module homomorphism 𝑓:𝑁 → 𝑀 and every module 

homomorphism 𝑔: 𝑃 → 𝑀, there exists a module homomorphism ℎ: 𝑃 → 𝑁 such 

that 𝑓ℎ = 𝑔. 

• Every short exact sequence of modules of the form 0 → 𝐴 → 𝐵 → 𝑃 → 0 is a spit 

exact sequence. 

 

3.4.1 EXAMPLES 

• Direct sums and direct summands of projective modules are projective. 
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• If 𝑒 = 𝑒2 is an idempotent in the ring R, then Re is a projective left module over 

R. 

 

3.4.2 REMARKS 

Any free module is projective. The converse is true in the following cases; 

• If R is a field or skew field: any module is free in this case. 

• If the ring R is a principal ideal domain. Foe example, this applies to R = Z, so an 

abelian group is projective if and only if it is a free abelian group. 

• If the ring R is a local ring. 

 

3.5 DEFINITION 

A left module Q over the ring R is injective if and only if it satisfies one of the following 

equivalent conditions: 

• If Q is a submodule of some other left R-module M, then there exists another K of 

M such that M is the internal direct sum of Q and K, i.e., 𝑄 + 𝐾 = 𝑀 𝑎𝑛𝑑 𝑄 ∩

𝐾 = {0}.    

• Any short exact sequence 0 → 𝑄 → 𝑀 → 𝐾 → 0 of left R-modules split. 

• If X and Y are left R-modules, 𝑓: 𝑋 → 𝑌 is an injective module homomorphism 

and 𝑔: 𝑋 → 𝑄 is an arbitrary module homomorphism, then there exists a module 

homomorphism ℎ: 𝑌 → 𝑄 such that ℎ𝑓 = 𝑔. 

 

3.5.1 EXAMPLES 

• Trivially, the zero module {0} is injective. 

• Given a field K, every K-vector space Q is an injective K-module. 

 

3.6 DEFINITION 

A module M over a ring R is flat if the following condition is satisfied: 
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For every injective linear map 𝜑:𝐾 → 𝐿 of R-modules, the map 

 𝜑 ⨂𝑅 𝑀 ∶ 𝐾 ⨂𝑅 𝑀 → 𝐿⨂𝑅 𝑀 is also injective where 𝜑 ⨂𝑅 𝑀 is the map induced by  

𝑘 ⨂𝑚 → 𝜑(𝑘)⨂𝑚. 

 

3.6.1 REMARK 

Every projective module is flat. The converse is in general not true: the abelian group Q is 

a Z-module which is flat, but not projective. 

Conversely, a finitely related flat module is projective. 

In general, the precise relation between flatness and projectivity shows that a module M is 

projective if and only if it satisfies the following conditions: 

• M is flat 

• M is a direct sum of countably generated modules, 

• M satisfies a certain Mittag-Leffler type condition. 

 

3.7 DEFINITON 

A module M over a ring R is called torsionless if it can be embedded into some direct 

product Rl. i.e., M is torsionless if each non-zero element of M has non-zero image under 

some R- linear functional 𝑓: 𝑓 ∈  𝑀∗ = 𝐻𝑜𝑚𝑅(𝑀, 𝑅), 𝑓(𝑚) ≠ 0. 

 

3.7.1 EXAMPLES 

• A unital free module is torsionless. More generally, a direct sum of torsionless 

modules is torsionless. 

• A submodule of a torsionless module is torsionless. In particular, any projective 

module over R is torsionless. 

• If R is a commutative ring which is an integral domain and M is a finitely 

generated torsion-free module then M can be embedded into Rn and hence M is 

torsionless. 
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3.8 DEFINITION 

A torsion-free module is a module over a ring such that zero is the only element 

annihilated by a regular element (non-zero divisor) of the ring. In other words, a module 

is torsion free if its torsion submodule is reduced to its zero element. 

 

3.9 ARTINIAN MODULES  

 

3.9.1 THEOREM  

The following are equivalent for an R- module M.  

1. Descending chain condition (d.c.c) hols for sub modules of M. ie, any descending 

chain 𝑀1 ⊇ 𝑀2  ⊇ ⋯  ⊇  𝑀𝑛 of submodules of M is stationary in the sense that  

𝑀𝑟 = 𝑀𝑟+1 = ⋯𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟.  

2. Minimum condition for submodule hols for M, in the sense that any non-empty 

family of submodules of M has a minimal element. 

 

Proof  

(1) ⟹ (2)  

Let = {𝑀𝑖 ;  𝑖𝜖 𝐼} be a non-empty family of submodule M.  

Pick any 𝑖1 𝜖 𝐼 and look at 𝑀𝑖1is minimal in ℱ, we are through. 

Otherwise, there is an i2 ϵ I such that  

Mi1 ⊇ Mi2, Mi1 ≠ Mi2.  

If thus Mi2 is minimal in ℱ, we through again. 

Proceeding thus, if we do not find the minimal element at any stage, we do not find the 

minimal element at any finite stage, we would end up with a non-stationary descending 

chain of submodules M1 namely Mi1⊇Mi2…Min⊇... contradicting (1). 

(2) ⟹ (1)  

Let M1⊇ M2 ⊇……. ⊇ Mn⊇ ……. be a descending chain of submodules of M. Consider 

the non-empty family  

ℱ =  {𝑀𝑖 ;  𝑖𝜖 𝐼} of submodules of M.  

This must have a minimal element, say Mr, for some r.  
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Now we must have Ms ⊆ Mr, ∀ 𝑠 ≥  𝑟, which implies by minimality of Mr.  

𝑖𝑒 𝑀𝑠  =  𝑀𝑟 , ∀ 𝑠 ≥  𝑟.  

 

3.9.2 DEFINITION  

A module M is called Artinian if d.c.c. holds for M.  

 

3.9.3 EXAMPLE OF ARTINIAN MODULE  

1. A module which has only finitely many submodules is Artinian. 

2. Finite dimensional vector space is Artinian.  

3. Infinite cyclic groups ae not Artinian. 

3.9.4 THEOREM 

1. Submodules and quotient modules of Artinian modules are Artinian. 

2. If a module M is such that it has a submodule N with both N and M / N are 

Artinian, then M is Artinian. 

 

Proof 

(1) Let M be Artinian and N a submodule of M. 

Any family of submodules of N is also one in M and hence the result follows. 

 

On the other hand, any descending chain of submodules of M/N corresponds to one in M 

(wherein each member contains N) and hence the result. 

 

(2) Let 𝑀1 ⊇ 𝑀2 ⊇ ⋯ ⊇ 𝑀𝑛 ⊇ ⋯ ⊇ ⋯ be a descending chain in M. 

Intersecting with N gives the descending chain in N, namely,  

𝑁 ∩𝑀1 ⊇ 𝑁 ∩𝑀2 ⊇ ⋯ ⊇ 𝑁 ∩𝑀𝑛 ⊇ ⋯ ⊇ ⋯ which must be stationary, say 

𝑁 ∩𝑀 = 𝑁 ∩𝑀𝑟+1 for some T.  

On the other hand, we have the descending chain in M/N, namely, 

(N + M1) /N ⊇ (N + M2)/N ⊇ · · · ⊇ (N + Mn) /N ⊇ · · · ⊇· · · which must be also 

stationary, say (N + Ms)/ N = (N + Ms+1)/ N = · · · for some s.  

Now we prove the following. 

Claim: Mn = Mn+1 ∀ n ≥ (r + s). 
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This is an immediate consequence of the four facts, namely, 

1. Mn ⊇ Mn+1, ∀ n ϵ N, 

2. N ∩ Mn = N ∩ Mn+1 ∀ n ≥ r, 

3. (N + Mn)/N = (N + Mn+1)/N, ∀ n ≥ s and 

4. (N + Mn)/N ≅ Mn / (N ∩ Mn), ∀ n ϵ N. 

Putting together we get that, 

Mn / (N∩ Mn) = (N + Mn)/N = (N + Mn+1)/N = Mn+1/ (N ∩ Mn+1) which implies the claim 

and hence the result.  

 

3.9.5 COROLLRY 

Every non-zero submodule of an Artinian module contains a minimal submodule. 

 

3.9.6 REMARK 

1. Direct sum of an infinite family of non-zero Artinian modules is not Artinian 

(because it contains non-stationary descending chains). 

2. However, a sum of an infinite family of distinct Artinian modules could be 

Artinian. 

 

3.10 NOETHERIAN MODULES  

3.10.1 THEOREM 

The following are equivalent for an R-module M. 

 

1. Ascending chain condition (a.c.c) holds for submodules of M, i.e., any ascending 

chain M1 ⊆ M2⊆… ⊆ Mn ⊆ …⊆…. of submodules of M is stationary in the sense 

that Mr = Mr+1 = · · · = · · · for some r. 

2. Maximum condition holds for M in the sense that any non-empty family of 

submodules of M has a maximal element. 

3. Finiteness condition holds for M in the sense that every submodule of M is finitely 

generated. 
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Proof 

(1) ⟹ (2)  

Let F = {Mi, iϵ I} be a non-empty family of submodules of M.  

Pick any index i1 ϵ I and look at Mi1. 

If Mi1 is maximal in F, we are done. 

Otherwise, there is an i2 ϵ I such that Mi1 c Mi2, Mi1 ≠ Mi2. 

If this Mi2 is maximal in F, we are done again. 

Proceeding thus, if we do not find a maximal element at any finite stage, we would end up 

with a non-stationary ascending chain of submodules of M, namely,  

Mi1 C Mi2 C · · · C Min C · · · · · · contradicting (1). 

(2) ⟹ (3)  

Let N be a submodule o f M. 

Consider the family F of all finitely generated submodules of N. 

This family is non-empty since the submodule (0) is a member. 

So this family has a maximal member, say N0 = (𝑥1, 𝑥2, … , 𝑥𝑟 ). 

If N0 ≠ N, pick an x ϵ N, x ϵ N0.  

Now 𝑁1 =  𝑁0 + (𝑥)  =  (𝑥, 𝑥1, 𝑥2, … , 𝑥𝑟) is a finitely generated submodule of N and 

hence N1 ϵ F. 

But then this contradicts the maximality of N0 in F since N0 c N1, N0 = N1 and so N0 = N 

is finitely generated. 

 

(3) ⟹ (1)  

Let M1 ⊆ M2⊆… ⊆ Mn ⊆ …⊆…. be an ascending chain of submodules of M. 

Consider the submodule N = Ui=1 
∞ Mi of M which must be finitely generated, say  

𝑁 = (𝑥1, 𝑥2, … , 𝑥𝑛). 

 

It follows that xi ϵ Mr, ∀ i, 1 ≤ i ≤ n for some r (> 0). 

Now we have N ⊆Ms ⊆ N ∀ s≥ r and so N = Mr = Mr+1=…. 

 

3.10.2 DEFINITION 

A module M is called Noetherian if a.c.c. holds for M. 
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3.10.3 EXAMPLES 

1. A module which has only finitely many submodules is Noetherian. 

2. Finite dimensional vectorspace are Noetherian. 

3. Infinite cyclic groups are Noetherian because every subgroup of a cyclcc group is 

again cyclic. 

 

3.10.4 THEOREM 

a) Submodules and quotient modules of Noetherian modules are Noetherian. 

b) If a module M is such that it has a submodule N with both N and M/N are 

Noetherian, then M is Noetherian. 

Proof: 

a) Let M be Noetherian and N be a submodule of M. 

Any family of submodules of N is also one in M and hence the result follows. 

On the other hand, any ascending chain of submodules of M/N corresponds to one 

in M and hence the result. 

b) Let 𝑀1 ⊆ 𝑀2 ⊆ ⋯ ⊆ 𝑀𝑛 ⊆ ⋯ ⊆ ⋯ be an ascending chain in M. 

 

Intersecting with N gives the ascending chain in N, 𝑁 ∩𝑀1 ⊆ 𝑁 ∩𝑀2 ⊆ 𝑁 ∩

𝑀𝑛 ⊆ ⋯ ⊆ ⋯ which must be stationary, say N∩𝑀𝑟 = 𝑁 ∩𝑀𝑟+1 = ⋯ = for 

some r. 

 

On the other hand, we have the ascending chain in M/N, 

(𝑁 +𝑀1)/𝑁 ⊆ (𝑁 +𝑀2)/𝑁 ⊆ …⊆ (𝑁 +𝑀𝑛)/𝑁 ⊆….⊆ ⋯ which must be  

 

also stationary, say, (𝑁 + 𝑀𝑠)/𝑁  = (𝑁 +𝑀𝑠+1)/𝑁 = … = ⋯ = for some s. 

This is an immediate consequence of the four facts, 

1. 𝑀𝑛 ⊆ 𝑀𝑛+1 , ∀ n𝜖𝑁 

 

2. 𝑁 ∩𝑀𝑛 = 𝑁 ∩𝑀𝑛+1, ∀ n ≥ r , 

3. (𝑁 +𝑀𝑛) 𝑁⁄ = (𝑁 +𝑀𝑛+1 ) 𝑁⁄ , ∀ n ≥ s and 
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4. (𝑁 +𝑀𝑛) 𝑁⁄ ≃ 𝑀𝑛 (𝑁 ∩𝑀𝑛)⁄ , ∀ nϵN. 

             Putting together we get that, 

             𝑀𝑛 (𝑁 ∩ 𝑀𝑛)⁄ = (𝑁 +𝑀𝑛) 𝑁⁄ = (𝑁 +𝑀𝑛+1) 𝑁⁄ = 𝑀𝑛+1 ∕ (𝑁 ∩𝑀𝑛+1) which 

implies the claim. 

Hence the result. 

 

3.10.5 COROLLARY 

Every non-zero submodule of a Noetherian module is contained in a maximal submodule. 

 

3.10.6 REMARK 

Maximal submodules exist in a non-zero Noetherian module (because a maximal 

submodule is simply a maximal element I the family of all submodules N of M, 𝑁 ≠ 𝑀. 

 

3.11 DEFINITION 

A pair of module homomorphisms, A →f B →g C, is said to be exact at b provided  

𝐼𝑚𝑓 = 𝑘𝑒𝑟𝑔.  

A finite sequence of module homomorphisms,  

𝐴0 → 𝐴1 → ⋯ →→ 𝐴𝑛−1 → 𝐴𝑛 is exact provided 𝐼𝑚 𝑓𝑖 = ker 𝑓𝑖+1, for I = 1,2,..,n-1.  

An infinite sequence of module homomorphism, ……𝐴𝑖−1 → 𝐴𝑖 → 𝐴𝑖+1 → ⋯ Is exact 

provided 𝐼𝑚 𝑓𝑖 = ker 𝑓𝑖+1for all 𝑖𝜖𝑍. 

 

3.11.1 REMARK 

0 → A → B is an exact sequence of module homomorphism iff f is a module 

monomorphism. Similarly, B → C → 0 is exact iff g is a module epimorphisms.  

 

 

An exact sequence of the form, 0 → A → B→ C → 0 is called a short, exact sequence, f 

is a monomorphism and g is an epimorphism.  
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3.11.2 EXAMPLES 

• For every submodule N of M, 

0 → N
𝑗
→𝑀

𝜋
→𝑀/𝑁 → 0, 

where j and 𝜋 are the natural injection and projection respectively. 

• For any two R-modules M and N, 

0 → 𝑀
𝑗𝑀
→ 𝑀⨁𝑁

𝜋𝑁
→ 𝑁 → 0, 

where 𝑗𝑀(𝑥) = (𝑥, 0) and 𝜋𝑁(𝑥, 𝑦) = 𝑦. (Split short exact sequence). 

• Any R-linear map 𝜑:𝑀 → 𝑁 indues a short exact sequence 

0 → 𝐾𝑒𝑟(𝜑)
𝑗
→𝑀

𝜑
→ 𝐼𝑚𝑎𝑔𝑒(𝜑) → 0, 

where j is the inclusion map, and  𝜑 is same as the given map but its codomain is 

changed to Image (𝜑). 

 

3.12 LEMMA (THE SHORT FIVE LEMMA) 

A commutative diagram of R- modules and R module homomorphism such that each 

Row is a short exact sequence. Then 

▪ 𝛼, 𝛾 monomorphisms ⇒ 𝛽 is a monomorphism  

▪ 𝛼, 𝛾 epimorphism ⇒ 𝛽 is a epimorphism 

▪ 𝛼, 𝛾 isomorphism ⇒ 𝛽 is a isomorphism  

 

   f                               g 

0           A   B  C  0 

                     

 𝛼                  𝛽                   𝛾 

 

0  A  B C  0 

 f  g 

 

Proof 
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➢ Let 𝑏𝜖𝐵 and suppose that 𝛽(𝑏) = 0. 

We must show that b = 0. 

By commutativity, we have, 𝛾𝑔(𝑏) = 𝑔′(𝑏) = 𝑔′(0) = 0 

This implies g(b) = 0, since 𝛾 is a monomorphism. 

By exactness of the top row at B, we have 𝑏 𝜖 ker 𝑔 = 𝐼𝑚 𝑓, say b = f(a), a 𝜖A. 

By commutativity 𝑓′(𝛼(𝑎)) = 𝛽𝑓(𝑎) = 𝛽(𝑏) = 0, by exactness of the bottom row t A, 

𝑓′ is a monomorphism and hence  𝛼(𝑎) = 0. 

But 𝛼 is a monomorphism. 

Therefore, a = 0 and hence b = f(a) = f(0) = = 0. 

Then 𝛽 is a monomorphism. 

➢ Let 𝑏′𝜖𝐵′. 

Then 𝑔′(𝑏)𝜖𝐶′, since 𝛾 is an epimorphism 𝑔′(𝑏) =  𝛾 is an epimorphism 𝑔′(𝑏′) = 𝛾(𝑐) 

for some 𝑐𝜖𝐶. 

By exactness of the top row at C, g is an epimorphism, hence c = g(b) for some b 𝜖B. 

By commutativity, 𝑔′(𝛽(𝑏)) = 𝛾𝑔(𝑏) = 𝛾(𝑐) = 𝑔′(𝑏′) 

Thus 𝑔′(𝛽(𝑏) − 𝑏′) = 0 and 𝛽(𝑏) = 𝑏′𝜖 ker 𝑔 =  𝐼𝑚 𝑓 by exactness say, 

 𝑓′(𝑎′) =  𝛽(𝑏) − 𝑏′, 𝑎′𝜖𝐴′. 

Since 𝛼 is an epimorphism, 𝑎′ =  𝛼(𝑎) for some 𝑎𝜖A. 

Consider b = f(a) 𝜖B, 𝛽(𝑏 − 𝑓(𝑏)) = 𝛽(𝑏) − 𝛽(𝑓(𝑎)) 

 

 

By commutativity, 𝛽(𝑓′(𝑎)) = 𝑓′(𝑎′) = 𝛽(𝑏) − 𝑏 

Hence 𝛽(𝑏 − 𝑓(𝑏)) = 𝛽(𝑏) − 𝛽(𝑓(𝑎)) = 𝛽(𝑏) − 𝛽(𝑏 − 𝑏′) = 𝑏′ and 𝛽 is an 

epimorphism. 

➢ 𝛼 is an epimorphism, implies 𝛼 is one-one and onto. 

Hence 𝛼 is a monomorphism and epimorphism.  

Similarly, 𝛾 is a monomorphism and epimorphism. 

By first and second part of proof, we have 𝛼, 𝛾 is an epimorphism implies 𝛽 is an 

epimorphism. 

𝛽 is a monomorphism and epimorphism implies 𝛽 is an isomorphism. 
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CHAPTER – 4 

MODULES OF FINITE LENGTH 

  



27 

 

 

4.1 DEFINITION  

A module M is called simple if   

• 𝑀 ≠ (0) 

• M has no submodules over than (0) and M 

4.1.1 EXAMPLES 

• Any one-dimensional vector space is simple. 

• Any minimal submodule of a module is simple. 

• A submodule N of M is maximal in M⇔𝑀/𝑁 is simple. 

4.1.3 REMARK 

1. A non-zero module is simple. 

2. (0) is a maximal submodule of M. 

3. M is a minimal submodule of M. 

4. Every non-zero element of M generates M. 

5. These four conditions are equivalent. i.e., 1) ⇔ 2) ⇔ 3) ⇔ 4) 

4.1.4 REMARK 

Simple submodules exist in a non-zero Artinian module while simple quotients exist for a 

non-zero Noetherian one. 

Proof 

Since minimal submodule exist in a non-zero Artinian module and minimal submodule of 

a module is simple. 

Hence simple module exists in a non-zero Artinian module. 

Since maximal submodules exist in a non-zero Noetherian module and the quotient 

module by maximal submodule, it becomes simple module. 

Hence simple quotients exist for a non-zero Noetherian module. 

4.2 DEFINITION 

By a composition series of a non-zero module M, we mean a finite descending chain of 

submodules of M starting with M and ending with (0), say  
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𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ ⋯ ⊃ 𝑀𝑚 = (0) such that the successive quotients 𝑀𝑖/𝑀𝑖+1 are simple 

∀ i. The integer m is  

called length of the series. It is also called a Jordan-Holder filtration or simply a filtration.  

4.2.1 EXAMPLE 

• A vector space V having a finite basis {𝑉1, 𝑉2, … , 𝑉𝑚} has a composition series of 

length m, say, 𝑉 = 𝑉0 ⊃ 𝑉1 ⊃ ⋯𝑉𝑚 = (0) where 𝑉𝑖 span of {𝑉𝑖+1, 𝑉𝑖+2, … , 𝑉𝑚} for 

all i,  0 ≤ 𝑖 ≤ 𝑚 with 𝑉𝑚 = (0). 

• An infinite cycle group cannot have a composition series since it has no minimal 

submodules as if it has then it will be cyclic subgroup generated < 𝑎𝑖 > then <

𝑎𝑖𝑘 > will be subgroup of < 𝑎𝑖 >. 

4.3 DEFINITION 

A module is called a module of finite length if it is either zero or has composition series. 

4.3.1 THEOREM 

A module is of finite length iff it is both Artinian and Noetherian. 

Proof 

Let M be a module of finite length. 

Case 1: If M = (0), the result is obvious. 

Case 2: Suppose M ≠ (0). 

Then it has a composition series, say 𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ ⋯ ⊃ 𝑀𝑚 = (0) 

Now we will prove by induction on m. 

If m = 1, then M is simple and hence trivially M is both Artinian and Noetherian. 

Assume that m ≥ 2 and any module having some composition series of length atmost m-1 

is both Artinian and Noetherian. 

Now look at M1 which has the composition series, say 𝑀1 ⊃ ⋯ ⊃ 𝑀𝑚 = (0) of length m-

1. 
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Hence M1 is both Artinian and Noetherian. 

On the other hand, the quotient 𝑀/𝑀1, being simple is both Artinian and Noetherian. 

[Since by a result, If M is a module such that it has a submodule N with both N and M/N 

are Artinian (Noetherian), then M is Artinian (Noetherian)] 

Hence M is both Artinian and Noetherian. 

Conversely, suppose that M is both Artinian and Noetherian. 

Assume that M ≠ (0). 

Since M is Noetherian, it has a maximal submodule, say M1. 

If M1 = 0, then M is simple and hence it is a module of finite length. 

If M ≠ 0 and M1 being Noetherian, has a maximal submodule, say M2. 

If M2 = (0), we have a composition series of M, namely 𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ 𝑀2 = (0). 

At any final stage n, if Mn ≠ (0), we get a maximal submodule Mn+1 of Mn and so on, 

yielding an infinitely descending chin of submodules of M, namely  

𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ ⋯ ⊃ 𝑀𝑛 ⊃ ⋯, contradicting that M is Artinian. 

Hence Mm = (0), for some m, as required. 

 

4.3.2 THEOREM 

Submodules and quotient modules of a module of finite length are modules of finite 

length. 

Proof 

Part 1: Let M be R-module of finite having a composition series,  

𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ ⋯ ⊃ 𝑀𝑚 = (0)                                                                            (1) 

Let N be a submodule of M.  

Intersecting (1) with N, f is R linear onto map. Observe that 𝑘𝑒𝑟𝑓 = (𝑁 +𝑀𝑖+1) ∕ 𝑁. 

Hence (𝑁 +𝑀𝑖) ∕ 𝑁 ∕ (𝑁 +𝑀𝑖+1) ∕ 𝑁 ≅ 𝑀𝑖 ∕ 𝑀𝑖+1 is simple. 

Deleting repetitions, we get composition series for M/N of the form, 
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𝑀 𝑁⁄ = 𝜂(𝑀0) ⊃ 𝜂(𝑀𝑗1) ⊃ ⋯ ⊃ 𝜂(𝑀𝑗𝑠) = (0). 

Hence M/N is of finite length. 

 

4.3.3 THEOREM 

If N is of the finite length and M/N is of finite length, then M is of finite length. 

Proof 

Let N be a submodule of such that N and M/N are of finite length, with composition 

series of lengths n and m respectively, 

i.e., 𝑁 = 𝑁0 ⊃ 𝑁1 ⊃ 𝑁𝑛 = (0) 

𝑀 𝑁⁄ = (𝑀 𝑁⁄ )0 ⊃ (𝑀 𝑁⁄ )1 ⊃⋯ (𝑀 𝑁⁄ )𝑀 = (0). 

For 0 ≤ 𝑖 ≤ 𝑚, let 𝑀𝑖 = 𝜂−1((𝑀 𝑁⁄ )𝑖), i.e., we have 

𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ ⋯𝑀𝑚 = 𝑁 

For 0 ≤ 𝑖 ≤ 𝑚 − 1,𝑀𝑖 ∕ 𝑀𝑖+1 ≅ ((𝑀 𝑁⁄ )𝑖 (𝑀 𝑁⁄ )𝑖+1⁄ ) is simple. 

Now we have a composition series for M which is of length n + m, 

𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ ⋯𝑀𝑚 = 𝑁 = 𝑁0 ⊃ 𝑁1 ⊃ ⋯𝑁𝑛 = (0). 

If the composition series of N and M/N contains n and m terms respectively. 

Then composition series of M contains m + n terms. 

 

4.4 THEOREM (JORDAN – HOLDER) 

Any two composition series of a non-zero module are equivalent. 

i.e., Let 𝑀 = 𝑀0 ⊃ 𝑀1 ⊃ ⋯𝑀𝑚 = (0) and 𝑀 = 𝑁0 ⊃ 𝑁1 ⊃ ⋯𝑁𝑛 = (0) be any two 

composition series of M. Then, M = n  and 

∀ 𝑖, 0 ≤ 𝑖 ≤ 𝑚 − 1, ∃ 𝑗 = 𝑗(1), 0 ≤ 𝑗 ≤ 𝑛 − 1 such that 𝑀𝑖 𝑀𝑖+1⁄ ≅ 𝑁𝑗 𝑁𝑗+1⁄  and vice 

versa. 
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Proof 

We will prove the result by induction on the length of one of the composition series, say 

m. 

• If m = 1, then M is simple and hence N1 = (0), i.e., n = 1 and the result follows. 

• Suppose m ≥ 2 and assume that the theorem is true for ay module having some 

composition series of length atmost m-1. 

Consider two cases. 

Case 1: M1 = N1 

Now M1 and N1 have their composition series, 

𝑀1 ⊃ 𝑀2 ⊃ ⋯𝑀𝑚 = (0) 

𝑁1 ⊃ 𝑁2 ⊃ ⋯𝑁𝑛 = (0) 

Since the first one is of length m-1, we get by induction that 

a. 𝑚 − 1 = 𝑛 − 1, 𝑖. 𝑒. , 𝑚 = 𝑛 and 

b. ∀ 1 ≤ 𝑖 ≤ 𝑚 − 1, ∃ 𝑗 = 𝑗(1), 1 ≤ 𝑗 ≤ 𝑛 − 1 such that 𝑀𝑖 𝑀𝑖+1⁄ ≅ 𝑁𝑗 ∕

𝑁𝑗+1 and vice versa. 

Since 𝑀 ∕𝑀1 ≅ 𝑁 ∕ 𝑁1, the result follows. 

Case 2: 𝑀1 ≠ 𝑁1 

Let 𝑀′ = 𝑀1 + 𝑁1 which is a submodule of M containing the submodules 𝑀1 and 𝑁1. 

But 𝑀1and 𝑁1 both are maximal. 

Hence 𝑀′ = 𝑀. 

𝑀 𝑀1⁄ = (𝑀1 + 𝑁1) 𝑀1⁄ ≅ 𝑁1 (𝑀1 ∩ 𝑁1)⁄ = 𝑁1 𝐾⁄ = 𝑠𝑖𝑚𝑝𝑙𝑒 

𝑀 𝑁1⁄ = (𝑀1 + 𝑁1) 𝑁1⁄ ≅ 𝑀1 (𝑀1 ∩ 𝑁1)⁄ = 𝑀1 𝐾⁄ = 𝑠𝑖𝑚𝑝𝑙𝑒                        (1) 

 

Where K = 𝑀1 ∩ 𝑁1, which is a submodule of a module of finite length M and thus K is 

also of finite length. 
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Hence K has composition series, say 𝐾 = 𝐾0 ⊃ 𝐾1 ⊃ ⋯ ⊃ 𝐾𝑟 = (0) 

Thus, we get four composition series for module M = 𝑀1 + 𝑁1. 

i.e., 𝑀 = (𝑀1 + 𝑁1) ⊃ 𝑀1 ⊃ 𝐾 ⊃ 𝐾1 ⊃ ⋯𝐾𝑟 = (0), 

      𝑀 = (𝑀1 + 𝑁1) ⊃ 𝑀1 ⊃ ⋯𝑀𝑚 = (0) 

     𝑀 = (𝑀1 + 𝑁1) ⊃ 𝑁1 ⊃ ⋯𝑁𝑛 = (0)    

  𝑀 = (𝑀1 + 𝑁1) ⊃ 𝑁1 ⊃ 𝐾 ⊃ 𝐾1 ⊃ ⋯𝐾𝑟 = (0) 

Of these, the first two are equivalent by case (1) and similarly the last two are equivalent 

and the first and third are equivalent by (1) above and hence we get second and third are 

equivalent. 

Hence proved. 
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CONCLUSION 

 

In mathematics, a module is one of the fundamental algebraic structures used in abstract 

algebraic. A module over a ring is a generalization of the notion of vector space over a 

field where in the corresponding scalars are the element of an arbitrary given ring with 

identity and a multiplication is defined between element of the ring and element of the 

module.  

 

Modules can be quite a bit more complicated than vector spaces, for instances, not all 

modules have a basis, and even those that do, free modules, need not have a unique rank 

if the underlying ring does not satisfy the invariable basis number condition, unlike vector 

spaces, which always have a basis whose cardinality is then unique. Thus, modules are 

very closely related to the representation theory of groups. They are also one of the 

central notions of commutative algebra and homological algebra, and are used widely in 

algebraic geometry and algebraic topology. 
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