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INTRODUCTION 

 

Lie algebra (pronounced as "LEE‖, named in the honour of Norwegian mathematician 

marius sophus lie( 1842 - 1899) is an algebraic structure in mathematics whose main use 

lies in studying geometric objects such as Lie groups and differentiable manifolds. Lie 

algebras were introduced to study the concept of infinitesimal transformations. The term 

"Lie algebra" (after Sophus Lee) was introduced by Hermann Weyl in the 1930s. In the 

older texts, the name "infinitesimal group" is used. 

 

Advances in the theory of Lie algebra developed by Sophus Lie,have long enriched 

mathematics , particularly in the area of group theory. In 1952 Lie algebra was used to 

solve one of the most famous problems in mathematics, the so called Hilbert's fifth 

problem , posed in the year 1900 by David Hilbert ( 1862- 1943) .In addition to its use 

solving this problem, Lie algebra has been used to gain a better understanding of 

properties of many dimensional surfaces in general, helping to advance the mathematical 

discipline of topology as well. 
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ABSTRACT 

 

Here we conduct a study on Lie Algebra. Its basic concepts, examples, Types of Lie 

Algebras. First chapter is an Introduction to Lie Algebra here we see the definitions and 

few examples and come across Lie Algebra of derivations and Abstract Lie Algebra. 

Second chapter deals with Ideals and Homomorphism, construction with the Ideals and 

Homomorphism representation, and then we come to next chapter, Chapter 3 which is 

about Solvability and Nilpotency where we encounter an important theorem ―Engels 

Theorem‖. In 4
th

 chapter we discuss an important topic Semi Simple Lie Algebras which 

plays a vital role in the study of Lie Algebra, here first we learn ―Lie Theorem‖, Jordan-

Chevalley decomposition, killing form, Criterion for semi simplicity, Cartan’s Criterion, 

Abstract Jordan decomposition and finally the complete reducibility of representations. 

This chapter paves ways to further study of Lie Algebra. 
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Chapter 1 

INTRODUCTION TO LIE ALGEBRA 

1.1. Basic Concepts 

Definition 1.1.1 

Definition. A vector space L over a field F, with an operation Lx L→L, 

denoted (x, y) ↦ [xy] and called the bracket or commutator of x and y, is called a Lie 

algebra over F if the following axioms are satisfied: 

(L1)   The bracket operation is bilinear. 

(L2)  [xx] = 0 for all x in L. 

(L3)  [x [yz]] + y[zx]] + [z[xy]] = 0 (x, y, z ∈ L) 

Axiom (L3) is called the Jacobi identity 

 

A Lie algebra is called real or complex when the vector space is respectively real or 

complex. 

 

Remark 1.1.1 

For any 𝑥, Є L , 

[𝑥+𝑦, 𝑥+𝑦] = [𝑥, 𝑥] + [𝑥, 𝑦] +[ 𝑦, 𝑥] +[ 𝑦, 𝑦] ........................ ( 1) 

But by L2 we have, 

[𝑥, 𝑥] = 0 , [𝑦, 𝑦] = 0 , [ 𝑥+𝑦, 𝑥+𝑦] = 0 

Therefore (1) implies, [𝑥, 𝑦] = - [𝑦, 𝑥] for all 𝑥, Є L .........( L2’ ) 

   Thus, Lie bracket is anticommutative. 

 

Definition 1.1.2 

Two Lie algebras L, L’ over F are isomorphic if there exists 

a vector space isomorphism ф: L→L’ satisfying  

ф ( [𝑥, 𝑦] ) = [ ф (𝑥) , ф (𝑦) ]  

for all x, y in L (and then ф is called an isomorphism of Lie Algebras) 
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Definition 1.1.4 

A subspace K of L is called a subalgebra if [xy] Є K whenever x, y Є K:) 

 

Example 1.1.1 

Let V is a finite dimensional vector space over F. Let End V denote set of all linear 

transformations from V to V. End V is a vector space over F with dimension 𝑛2 and it is a 

ring relative to the usual product operation. Then End V with the operation [𝑥, 𝑦] = 𝑥𝑦 – 

𝑦𝑥 called the bracket of 𝑥 and 𝑦 is a Lie algebra over F. This Lie algebra is called the 

general linear algebra denoted by 𝔤𝔩 (V) and it can also be identified with the set of all 

𝑛⨯𝑛 matrices over F, denoted by 𝔤𝔩 (𝑛,F) 

Any sub algebra of a Lie Algebra 𝔤𝔩(V ) is called a Linear Lie Algebra 

 

Example 1.1.2 

Let dim V=+1.  Denote by 𝔰𝔩(V) or by 𝔰𝔩(+1,F)  the set of endomorphisms of V having 

trace zero .(Recall that trace of a matrix is the sum of its diagonal entries, this is 

independent of the choice of basis for V, hence makes sense for an endomorphism of V).  

Since Tr(xy) = Tr(yx), and Tr(x+y ) = Tr(x) +Tr(y) 𝔰𝔩(V) is a subalgebra of 𝔤𝔩(V ) called  

the Special linear algebra. 

 

Example 1.1.3 

Let dim V = 2, with basis (𝑣1,2,...,𝑣2).Define a nondegenerate skew – symmetric form  

𝑓 on V by the matrix   . The set of all endomorphisms 𝑥 of V satisfying  

𝑓( 𝑥(𝑣) , 𝑤 ) = - 𝑓( 𝑣, 𝑥(𝑤) ) is called the Symplectic algebra denoted by 𝔰𝔭(V ) or 𝔰𝔭(2 

,F). dim 𝔰𝔭(2 ,F ) = 22
 + . 

 

Example 1.1.4 

An 𝑛⨯𝑛 matrix A is orthogonal denoted by O (𝑛) if the column vectors that make up A 

are   orthonormal, that is, if 
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Equivalently, A is orthogonal if it preserves inner product, namely if 

< 𝑥, 𝑦 > = < A𝑥, A𝑦 > for all 𝑥, Є R𝑛. 

Let dim V = 2 +1 be odd and take f to be the nondegenerate symmetric bilinear form on V 

 

whose matrix is     The set of all endomorphisms of V satisfying  

 

 

𝑓( 𝑥(𝑣) ,𝑤 ) = - 𝑓 (𝑣 , 𝑥 (𝑤) ) is called the Orthogonal algebra 𝔬(V ) or 𝔬(2 + 1 ,F). 

dim 𝔬(V ) = 22 +. 

 

Similar to SL(𝑛,C), the special orthogonal group, denoted by SO(𝑛), is defined as 

subgroup of O(𝑛) whose matrices have determinant 1. Again, this is a matrix Lie group. 

 

Example 1.1.5 

Let (𝑛,F) be the upper triangular matrices in 𝔤𝔩(𝑛,F) (A matrix A is said to be upper 

triangular if 𝑥ij = o whenever i > j .). This is Lie algebra with same Lie bracket as (𝑛,F). 

    

1.2 Lie Algebras of Derivations 

[ By an F-algebra (not necessarily associative) We simply mean a vector space V over F 

endowed with bilinear operation VxV→V,  

By a derivation ofVmean a linear map δ : V→V satisfying the familiar product rule  

δ(ab= a δ(b)+ δ(a)b. It is easily checked that the collection Der V of all derivations of V 

is a vector sub space of End V. 

The commutator [δ, δ'] of two derivations is again a derivation. So Der(V ) is a 

subalgebra of 𝔤𝔩(V ). 

Example 1.2.1. 

Let x, y ∈ End(V ), and δ, δ' ∈ Der(V ).By definition of the commutator, 

[δ, δ'] = (δδ' − δ'δ): 

• Der(V ) is a vector subspace of End(V): 

δ[x, y] = δ(xy − yx) = δ(xy) − δ(yx) 

= xδ(y) + δ(x)y − (yδ(x) + δ(y)x) 

= δ(y)x − yδ(x) + xδ(y) − δ(y)x 

= [δ(x), y] + [x, δ(y)] 
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The commutator [δ, δ'] of two derivations δ, δ' ∈ Der(V ) is again a 

derivation. 

 

([δ, δ'](x))y + x([δ, δ'](y)) = ((δδ' − δ'δ)(x))y + x(δδ' − δ'δ)(y) 

= (δδ'(x) - δ'δ(x))y + x(δδ'(y) - δ'δ(y)) 

= δδ'(x)y - δ'δ(x)y + xδδ'(y) - xδ'δ(y) 

= δ(δ'(x)y + xδ'(y)) - δ'(δ(x)y + xδ(y)) 

- δ'(δ(x)y) - δ(x)δ'(y) - δ'(x)δ(y) - xδ'δ(y) 

= δ(δ'(x)y + xδ'(y)) - δ'(δ(x)y + xδ(y)) 

= δ(δ'(xy) - δ'(δ(xy)) 

= [δ,δ'](xy) 

 

Definition 1.2.1 

 

Given x L, ∈ the map y → [x, y], is an endomorphism of L, denoted adx, where adx is an 

inner derivation. Derivations of the form [x[yz]] = [[xy]z] +[y[xz]] are inner. All others are 

outer. 

 

Example 1.2.2. 

By example 2.3.1, the collection of derivations, Der(V ), satisfies skew 

symmetry. By definition 2.3.2, Der(V ) satisfies the Jacobi identity. Therefore Der(V) 

defines a Lie algebra. 

 

Definition 1.2.2 

The map L → DerL sending x to adx is called the adjoint representation of L. 

 

Definition 1.2.3 

If L is any Lie algebra with basis x1, ..., xn, then the multiplication table for L is 

determined by the structural constants, the set of scalars {bijk} such that 

[ xi, xj ] = Σbijkxk for all k =1 to n. 
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1.3 Abstract Lie Algebras 

Sometimes it is desirable however, to contemplate Lie Algebras abstractly. For Example if 

L is an arbitrary finite dimensional cector space over F, We can view L as a Lie Algebra by 

setting [xy] = 0 for all x,y ∈ L. Such an algebra having trivial Lie multiplication, is called 

Abelian.( because in the linear case[ x,y]=0 just means that x and y commute). If L is any 

Lie algebra, with basis x1,x2……..xn. It is clear that the entire multiplication table of L can be 

recovered from the structure constants aij
K 

which occur in the expressions  

[xi, xj] = Σaij
k
xk 

Example 1.3.1. 

Given L as a Lie algebra, with [xy] = 0 for all x, y ∈ L, 

[xy] = (xy − yx) = 0 ⇔ xy = yx 

Therefore L under trivial Lie multiplication, is abelian. Similarly, [yx] = 0. 
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Chapter 2 

IDEALS & HOMOMORPHISMS 

2.1 Ideals 

A subspace I of a Lie algebra L is called an ideal of L if x ∈ L, y ∈ I 

together imply [x, y] ∈ I. ( since [xy] = -[yx] , the condition could just as well be written  

: [y,x] ∈ I ) 

 

Example 2.1.1 

(1) Obviously 0 and L itself are ideals in L. 

(2) (centre) A less trivial example is the center 

Z(L) := {x ∈ L | [x, y] = 0 for all y ∈ L} 

(3)  (derived algebra) Another important example is the derived algebra of L 

denoted by 

[L, L] := Span({[x, y] | x, y ∈ L}) 

which is analogous to the commutator subgroup of a group. It consists of all 

linear combinations of commutators [x,y], and is clearly an ideal. 

(4)  (sum) If I, J are two ideals of a Lie algebra L, 

then I+J ={ x+y | x∈I, y∈I} is also an ideal. 

 

Correspondence between Ideals 

 

Suppose that I is an ideal of the Lie algebra L. There is a bijective correspondence between 

the ideals of the factor algebra L/I and the ideals of L that contain I. This correspondence 

is as follows. If J is an ideal of L containing I, then J/I is an ideal of L/I. Conversely, if K is 

an ideal of L/I, then set J := {z ∈ L : z +I ∈ K}. One can readily check that J is an ideal of 

L and that J contains K. These two maps are inverses of one another. 

 

Example 2.1.2 

Suppose that L is a Lie algebra and I is an ideal in L such that L/I is abelian. In this case, 

the ideals of L/I are just the subspaces of L/I. By the ideal correspondence, the ideals of L 

which contain I are exactly the subspaces of L which contain I. 
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Definition 2.1.1 

If L = [L, L], then we call L a perfect Lie algebra. 

 

Definition 2.1.2 

A Lie algebra L is called simple if L has no ideals except itself and 0, and if moreover  

[L, L] ≠ 0 

 

Definition 2.1.3 

If L and L' are Lie algebras over F, then we can define a Lie algebra structure on the direct 

sum L L' as [x + x', y + y'] = [x, y] + [x', ⊕ y'] for x, y ∈ L, x', y'∈ L'. 

The Lie algebra L ⊕ L' is called the direct product of L and L'. 

 

Constructions with Ideals 

Suppose that I and J are ideals of a Lie algebra L. There are several ways we can construct 

new ideals from I and J. First we shall show that I ∩ J is an ideal of L. We know that I ∩ J 

is a subspace of L, so all we need check is that if x ∈ L and y ∈ I ∩ J, then [x, y] ∈ I ∩ J: 

This follows at once as I and J are ideals. 

 

Exercise 2.1.1 

Show that I+ J is an ideal of L where 

I + J:= {x + y : x ∈ I, y ∈ J}. 

We can also define a product of ideals. Let 

[I,J] := Span{[x, y] : x ∈ I,y ∈ J}. 

 

Proof 

We claim that [I,J] is an ideal of L. Firstly, it is by definition a subspace.Secondly,  

if x ∈ I, y ∈ J, and u ∈ L, then the Jacobi identity gives 

[u, [x, y]] = [x, [u, y]] + [[u, x], y]. 

Here [u, y] ∈ J as J is an ideal, so [x, [u, y]] ∈ [I,J ]. Similarly, [[u, x], y] [I,J]. 

Therefore their sum belongs to [I,J]. 

A general element t of [I,J] is a linear combination of brackets [x, y] with x ∈ I, y ∈ J,  

say t = Σci , yi], where the ci are scalars and xi ∈ I and yi ∈ J. Then, for any u ∈ L, we have 

[u, t] = u,Σ ci[xi, yi] = Σci[u, [xi, yi]], 



10 

 

 

where [u, [xi, yi]] ∈ [I,J ] as shown above.Hence [u, t] ∈ [I,J ] and so [ I,J ] is an ideal 

of L. 

 

Definition 2.1.4 

 The normalizer of a subalgebra (or just subspace) K of L is defined by 

NL(K) = {x ∈ L | [x,K] ⊆ K}. 

 If K = NL(K), we call K self-normalizing 

 The centralizer of a subset X of L is 

 CL (X) := {x ∈ L | [x, X] =0}. 

 

Definition 2.1.5 

Let L be a Lie algebra over a field F and K an ideal of L. Then the quotient space  

L/K: = {x + K | x ∈ L} where x + K: = {x + k | k ∈ K} for x ∈ L . The bracket operation on 

L/K is then defined by [x + K, y + K]:= [x, y] + K. This is well-defined because K is an 

ideal, and it inherits all the axioms directly from L. 

 

2.2. Homomorphisms and Representations 

 
A linear transformation ф: L → L ’ is called a homomorphism if 

ф([𝑥, 𝑦]) = [ ф(𝑥) , ф (𝑦) ] for all 𝑥,𝑦 Є L . ф is called a monomorphism if 

Kernal(ф) = 0 , an epimorphism if Image (ф) = L ’ , an isomorphism if it is both 

monomorphism and epimorphism. 

A representation of a Lie algebra L is a homomorphism ф: L → 𝔤𝔩 (V ) where V is a 

vector space over F. 

The adjoint representation ad:L → 𝔤𝔩(L ) is an example of representation of a Lie algebra 

Clearly , ad is a linear transformation. 

Consider, [ad𝑥, ad  ] (𝑧) = ad 𝑥 ad 𝑦 (𝑧) – ad 𝑦 ad 𝑥 (𝑧) 

= ad 𝑥 ( [𝑦, 𝑧] ) – ad 𝑦 ( [𝑥, 𝑧]) 

= [𝑥, [𝑦, 𝑧] ] – [ 𝑦, [ 𝑥, 𝑧] ] 

= [x, [ 𝑦, 𝑧]] + [ [ 𝑥, 𝑧], 𝑦 ] (by L2) 

= [ [ 𝑥, 𝑦] , 𝑧] ( by L3) 

= ad [x , 𝑦] (𝑧) 
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Thus, ad preserves the bracket. 

It consists of all 𝑥 Є L for which ad 𝑥 = 0. i.e., for which [ , 𝑦]= 0 (for all 𝑦 ЄL ). 

So Ker (ad) = Z (L )  

 

Proposition 2.2.1 

a) If ф :L → L ’ is a homomorphism of Lie algebras , then L / ker ф ≅ Im ф. 

If I is any ideal of L induced in ker ф, there exist a unique homomorphism 

 Ѱ : L /I →L’ making the following diagram 

commute. (π = canonical map): 

 

 

 

 

 

 

 

 

 

b) If I and J are ideals of L such that I ⊂ J , then I /J is an ideal of L /I and (L /I )/(J /I ) is 

mutually isomorphic to L /J. 

c) If I , J are ideals of L , there is a natural isomorphism between (I +J )/J and I /(I ∩ J ). 

 

Proof 

a) Let ϕ : L → L' be a homomorphism of Lie algebras. Our first goal is to show given I is 

any ideal of L included in Kerϕ, there exists a unique homomorphism ψ : L/I → L'. Let 

Ik,Il ∈ L/I.To show ψ is a group isomorphism, note that  

j = j' l. If j ∈ Il then ϕ(j' l) = ϕ(j')ϕ(l), since ϕ is a homomorphism. Therefore ψ is well 

defined. For all j, k ∈ I: 

ψ(IkIl) = ψ(Ikl) = ϕ(kl) = ϕ(k)ϕ(l) = ψ(Il)ψ(Ik) 

Therefore ψ is a homomorphism. Let kerϕ = I, 

ϕ(Il)=1 ⇐⇒ ϕ(l)=1 ⇐⇒ l∈kerϕ ⇐⇒ l∈I ⇐⇒ Il = I 

b) Fist note: if i ∈ I ∩ J, then by definition of the intersection, [i, x] ∈ I and 
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,i, x- ∈ J, so ,i, x- ∈ I ∩ J. Therefore, I ∩ J satisfies the definition of an ideal. Given x +I ∈ 

L/I and j + I ∈ J/I, we have: 

[x + I,j +I] = [x, j] + [x, I]+[I, j] + [I,I] = [x, j] + I ∈ J/I 

Where [x, j] ∈ L. Therefore, J/I is an ideal of L/I. Additionally, given x + I, 

y + I ∈ L/I, x + I = y + I mod J/I implies that (x − y) + I ∈ J/I and therefore x − y = j ∈ J. 

Thus x and y are equivalent mod J in L. 

c) Let i1 + j1, i2 + j2 ∈ I+J. If i1 + j1 = i2 + j2 mod J, then (i1 − i2) = j2 − j1 = j ∈ J, but  

i1 − i2 ∈ I. Therefore i1 − i2 ∈ I∩J 

 

Definition 2.2.1 

A representation of a Lie algebra L is a homomorphism ϕ : L → gl(V ) where V is a 

vector space over F where V is a finite dimensional vector space over F. Sometimes we say 

(V, ϕ) is a representation of L. 

 

Proposition 2.2.2 

Any simple Lie algebra is isomorphic to a linear Lie algebra. 

 
Proof. 

If L is simple, then Z(L) = 0, so that ad : L → gl(L) is a monomorphism. Hence L is 

isomorphic to a subalgebra of gl(L). 

 

Definition 2.2.2 

An automorphism of L is an isomorphism of L onto itself. Aut(L) denotes the group of all 

automorphisms of L. 

 

 

 

 

 

 

 

 

 



13 

 

 

Chapter 3 

SOLVABLE AND NILPOTENT LIE ALGEBRAS 

  3.1 Solvability 

 
  Lemma 3.1.1 

 

Suppose that I is an ideal of L. Then L/I is abelian if and only if I contains the derived 

algebra L'. 

Proof 

The algebra L/I is abelian if and only if for all x, y ∈ L we have 

[x +I,y + I]=[x, y] + I= I 

or, equivalently, for all x, y ∈ L we have [x, y] ∈ I. Since I is a subspace of L,this holds 

if and only if the space spanned by the brackets [x, y] is contained in I; that is, L'⊆ I. 

This lemma tells us that the derived algebra L is the smallest ideal of L with an 

abelian quotient. 

 

Definition 3.1.2 

 

The derived series of a Lie algebra L is a sequence of ideals of L where 

L
(0)

 = L , L
(1)

= [LL] , L
(2)

 = [L
(1)

L
(1)

] ,........ L
(i)

 = [ L
(i-1

)L
(i-1)

 ] 

This gives a descending sequence of ideals, 

L(0) ⊇ L(1) ⊇ L(2) ⊇ ・ ・ ・ 

 

Definition 3.1.3 

 

The Lie algebra L is said to be solvable if for some m ≥ 1 we have L
(m) 

= 0 

A simple algebra is not solvable (since L
(i)

 = L ∀ i) 

 

Lemma 3.1.4 

L is a Lie algebra with ideals 

L = I0 ⊇ I1 ⊇ ... ⊇ Im−1 ⊇ Im = 0 

Such that Ik−1/Ik is abelian for 1 ≤ k ≤ m, then L is solvable. 

 

 



14 

 

 

Proof 

We shall show that L
(k)

 is contained in Ik for k between 1 and m. Putting k = m will then 

give L
(m)

 = 0. 

Since L/I1 is abelian, we have from Lemma 4.1.1 that L' ⊆ I1.For the inductive step, we 

suppose that L
(k−1)

 ⊆ Ik−1, where k ≥ 2. The Lie algebra Ik−1/Ik is abelian. Therefore by 

Lemma 3.1.4, this time applied to the Lie algebra Ik−1, we have [Ik−1, Ik−1] ⊆ Ik. But L
(k−1)

 is 

contained in Ik−1 by our inductive hypothesis, so we deduce that L
(k)

 = [L(k−1), L(k−1)- ⊆ 

[Ik−1, Ik−1], and hence L
(k)

 ⊆ Ik 

 

Proposition 3.1.5 

Let L be a Lie algebra. 

(a) If L is solvable, then so are all subalgebras and homomorphic images of L. 

(b) If I is a solvable ideal of L such that L/I is solvable, Then L itself is solvable. 

(c) If I and J are solvable ideals of L, then so is I + J 

 

Proof 

(a) From the definition, if K is a subalgebra of L, then K
(i)

 ⊂ L
(i).

 Similarly, if φ : 

L → M is an epimorphism, an easy induction on i shows that φ(L
(i)

) = M
(i).

 

(b) Say (L/I)
(n) 

= 0. Applying part (a) to the canonical homomorphism 

π : L → L/I, we get π(L
(n)

) = 0, or L
(n)

 ⊂ I = Ker π. Now if I
(m)

 = 0, the obvious fact that 

(L
(i)

)
(j)

 = L
(i+j)

implies that L
(n+m)

 = 0 (apply proof of part (a) to the situation L
(n)

 ⊂ I). 

(c) One of the standard homomorphism theorems (proposition 3.2.3 c) yields an 

isomorphism between (I+J)/J and I/ (I ∩J). As a homomorphic image of I, the right side is 

solvable, so (I+ J)/J is solvable. Then so is I + J, by part 

(b) applied to the pair I+ J, J. 

 

Definition 3.1.6 

As a first application, Let L be an arbitrary Lie Algebra and let S be a maximal solvable 

ideals (that is, one included in no larger solvable ideals) If I is any other solvable ideals of 

L, then part (c) of the proposition forces S+I = S(by maximality), or I⊂ S. This proves the 

existence of a unique maximal solvable ideal, called the radical of L and denoted by    

Rad L. In case Rad L = 0, L is called semisimple. For example, a simple algebra is  
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semisimple: L has no ideals except itself and 0, and L is nonsolvable. Also L = 0 is 

semisimple. 

 

semisimple if it has no non-zero solvable ideals or equivalently if radL = 0. 

 

3.2 Nilpotency 

Definition 3.2.1 

The descending central series is a sequence of ideals of L defined as 

L
0
 = L , L

1
 = [LL] , L

2
 = [ LL

1
 ] ,......... L

i 
= [L

i-1
 L

i-1
] 

 

Definition 3.2.2 

The Lie algebra L is said to be nilpotent if for some m ≥ 1 we have Lm = 0. 

Examples 

For example, any abelian algebra is nilpotent 

Clearly, L
(i)

 ⊆ Li
 for all i, so nilpotent algebras are solvable. The converse is false. 

Proposition 3.2.3 

Let L be a Lie algebra 

(a). If L is nilpotent, then so are all subalgebras and homomorphic images of L. 

(b). If L/Z(L) is nilpotent, then so is L. 

(c). If L is nilpotent and nonzero, then Z(L) ≠ 0. 

 

Proof 

(a) Let K be a subalgebra, then by definition Ki ⊂ Li. Similarly, if ϕ : L → M is an 

epimorphism, we can show, by induction on i, that ϕ(Li) = Mi 

(b) Let Ln ⊂ Z(L), then L
n+1 

= [L, L
n
] {By definition of the descending central series} 

= [L, Z(L)] = 0 {By definition of the center} 

(c) The last nonzero term of the descending central series is central, i.e if 

Ln = 0 and L
n−1 

6= 0, then [L
n−1

, L] = 0 and this implies that Z(L) ⊇ L
n−1 

6= 0. 

 

Example 3.2.4 

Let I be an ideal of L. Then each member of the descending central series of I is also an 

ideal of L. 
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Proof 

Since I is an ideal of L, I 0 = I is also an ideal of L. Assume In=[I, In−1] is an ideal of L. Let 

x ∈ L, y ∈ I, z ∈ In 

[x[yz]] = −[y[zx]] − [z[xy]]. {By the Jacobi identity} 

∈ ,y, In- + ,z, I- *Since ,z, x- ∈ In, ,x, y- ∈ I+ 

∈ ,I,In- + ,In,I- *Since y ∈ I, z ∈ In} 

= I
n+1 

+ I
n+1

 

= I
n+1

 

Therefore I
n+1 

is an ideal, then each member of the descending central series of I is an ideal 

of L. 

 

3.3 Proof of Engel’s Theorem 

Lemma 3.3.1 

Let A be a nilpotent operator on a vector space V, then 

1. There exists a non  zero v ∈ V such that Av = 0 

2. adA is a nilpotent operator on gl(v). 

 

Theorem 3.3.2 

Let L be a subalgebra of gl(v), with V finite dimensional. If L consists of nilpotent 

endomorphisms and V ≠ 0, then there exists a nonzero v ∈ V for which L.v = 0. 

 

Proof. Use induction on dim L, the case dim L = 0 (or dim L = 1) being obvious. Suppose 

K= L is any subalgebra of L. According to Lemma 3.2, K acts (via ad) as a Lie algebra of 

nilpotent linear transformations on the vector space L, hence also on the vector space L/K. 

Because dim K < dim L, the induction hypothesis guarantees existence of a vector x+K = 

K in L/K killed by the image of K in gl(L/K). This just means that [yx] ∈ K for all y ∈ K, 

whereas x ∈ K. In other words, K is properly included in NL(K) (the normalizer of K in L, 

see (2.1)). Now take K to be a maximal proper subalgebra of L. The preceding argument 

forces NL(K) = L, i.e., K is an ideal of L. If dim L/K were greater than one, then the 

inverse image in L of a one dimensional subalgebra of L/K (which always exists) would be 

a proper subalgebra properly containing K, which is absurd; therefore, K has codimension 

one. This allows us to write L = K+ Fz for any z ∈ L-K. 
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 By induction, W = {v ∈ V|K.v = 0} is nonzero. Since K is an ideal, W is stable under L: x 

∈ L, y ∈ K, w∈ W imply yx.w = xy.w —[x, y].w = 0. Choose z ∈ L — K as above, so the 

nilpotent endomorphism z (acting now on the subspace W) has an eigenvector, i.e., there 

exists nonzero v e W for Which z.v = 0. Finally, L.v = 0, as desired. 

 Proof of Engel's Theorem. We are given a Lie algebra L all of whose elements are ad-

nilpotent; therefore, the algebra ad L ⊂ gI(L) satisfies the hypothesis of Theorem 3.3. (We 

can assume L = 0.) Conclusion: There exists x = 0 in L for which [Lx] = 0, i.e., Z(L) = 0. 

Now L/Z(L) evidently consists of ad-nilpotent elements and has smaller dimension than L. 

Using induction on dim L, we find that L/Z(L) is nilpotent. Part (b) of Proposition 3.2 then 

implies that L itself is nilpotent.  

 

Theorem 3.3.3 Engel I 

Let V be a vector space; let L be a sub Lie algebra of the general linear Lie algebra gl(V ), 

consisting entirely of nilpotent operators. Then L is a nilpotent Lie algebra. 

 

Proof 

By Theorem 4.3.2, if we apply the dual representation (inverse transpose) of L on V
t;
 the 

operators are nilpotent. Let λ ≠ 0 be a function on V that is annulled by L, then the space  

(L ・ v) spanned by all Xv with X ∈ L, is a proper subspace of V , and in fact, is in the 

kernal of λ where λ(Xv) = X
t
λ(v) = 0. 

Recall (L ・ v) is invariant under L, so we can iterate the argument. 

Let m = dimV , then the abbreviated iteration X1 ・ X
2
...Xm, vanishes, since for every Xi, 

the dimension of V is decreased by at least 1 where any long bracket [X1X2...Xk] expands 

by the bracket operation into a sum of products of kX’s. 

 

Theorem 3.3.4 Engel II 

If all elements of L are ad-nilpotent, then L is nilpotent. 

 

Proof 

Given a Lie algebra of L having only ad-nilpotent elements, since the adoint is a linear 

transformation, adL ⊂ gl(L), which satisfies the hypothesis of Theorem 3.3.2 when L ≠ 0.  
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Thus there exists an x ∈ L such that [L, x] = 0, which implies that the center of L is nonzero. 

Therefore L/Z(L) consists of adnilpotent elements, where dim adL/Z(L) < dimL. 

Using an induction argument on the dimension of L, similar to Theorem 3.3.2, it follows 

that L/Z(L) is nilpotent. Therefore, by Proposition 4.2.3 (part2.), if L/Z(L) is nilpotent, then 

so is L. 

 

Corollary 3.3.5 

Let L be nilpotent, and K be an ideal of L. Then ifk 6= 0, k ∩ Z(L) 6= 0 

 

Proof 

Since K is an ideal of L, L induces a linear transfomation on K via the adjoin 

representation, therefore there exists x ∈ K(k 6= 0). Therefore [L, x] = 0 by definition of 

nilpotency, and thus x ∈ K ∩ Z(L) as desired. 
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Chapter 4 

SEMI SIMPLE LIE ALGEBRAS 

 

Theorem. Let L be a solvable subalgebra of gl(t), V finite dimensional. If V 0 0, then  

V contains a common eigenvector for all the endomorphisms in L. 

 

Proof Use induction on dim L, the case dim L = 0 being trivial. We attempt to imitate the 

proof of Theorem 3.3 (which the reader should review at this point). The idea is (1) to 

locate an ideal K of codimension one, 

(2) to show by induction that common eigenvectors exist for K, (3) to verify that L 

stabilizes a space consisting of such eigenvectors, and (4) to find in that space an 

eigenvector for a single z E L satisfying L = K+ Fz. 

Step (1) is easy. Since L is solvable, of positive dimension, L properlyincludes [LL]. L/ 

[LL] being abelian, any subspace is automatically an ideal. 

Take a subspace of codimension one, then its inverse image K is an ideal of codimension 

one in L (including [LL]). 

For step (2), use induction to find a common eigenvector v e V for K (K is of course 

solvable; if K= 0, then L is abelian of dimension 1 and an eigen- vector for a basis vector 

of L finishes the proof.) This means that for x ∈ K 

x.v = A(x)v, A: KF some linear function. Fix this A, and denote by W the subspace 

{w E Vix.w = A(x)w, for all x E K}; so W # 0. 

Step (3) consists in showing that L leaves W invariant. Assuming for the moment that this 

is done, proceed to step (4): Write L = K+Fz, and use the fact that F is algebraically 

closed to find an eigenvector vo e W of z (for some eigenvalue of z). Then vc, is obviously 

a common eigenvector for L (and A can be extended to a linear function on L such that 

x.vo = A(x)vo, x E L). 

It remains to show that L stabilizes W. Let w E W, x e L. To test whether or not x.w lies 

in W, we must take arbitrary y E K and examine yx.w = xy.w—[x, y].w = A(y)x.w — 

A([x, y])w. Thus we have to prove that A([x, y]) = 0. For this, fix w E W, x E L. Let n > 

0 be the smallest integer for which w, x.w, ... , x".w are linearly dependent. Let W, be the  
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subspace of V spanned by w, x.w, , 
1
.w (set Wo = 0), so dim Wn  = n,  

 

Wn = Wn+1 (i  0) and x maps W„ into W. It is easy to check that each y E K leaves each 

W, invariant. Relative to the basis w, x.w, , x
11-1

.w of W„, we claim that y E K is 

represented by an upper triangular matrix whose diagonal entries equal A(y). This 

follows immediately from the congruence:   

  (*) yx'.w A(y)
i
.w (mod Wi), 

which we prove by induction on i, the case i = 0 being obvious. Write y x i . w  =  

y x x i - 1  . w = [ x ,  y ] x l -  . w .  B y  i n d u c t i o n ,  y x j - 1 . w  =  A(y)xl" i.w+ w' (w' e 

W,_1); since x maps W,_, into W, (by construction), (*) therefore holds for all i. 

According to our description of the way in which y e K acts on W„, Trw.(y) = nA(y). 

In particular, this is true for elements of K of the special form [x, y] (x as above, y in K). 

But x, y both stabilize W,„ so [x, y] acts on W„ as the commutator of two endomorphisms 

of W„; its trace is therefore 0. We conclude that nA([x, y]) = 0. Since char F = 0, this 

forces A([x, y]) = 0, as required. 0 

Corollary A (Lie's Theorem). Let L be a solvable subalgebra of g l( V), dim V = n < co. 

Then L stabilizes some flag in V (in other words, the matrices of L relative to a suitable 

basis of V are upper triangular). 

Proof Use the theorem, along with induction on dim V. 0 

More generally, let L be any solvable Lie algebra, 0: L gl(V) a finite dimensional 

representation of L. Then fl)(L) is solvable, by Proposition 3.1(a), hence stabilizes a flag 

(Corollary A). For example, if is the adjoint representation, a flag of subspaces stable 

under L is just a chain of ideals of L, each of codimension one in the next. This proves: 

Corollary B. Let L be solvable. Then there exists a chain of ideals of L, 0 = L0 c L1 ⊂ ... ⊂ 

Ln = L, such that dim Li =i 

Corollary C. Let L be solvable. Then x E [LL] implies that adL x is nilpotent. In 

particular, [LL] is nilpotent. 

  Proof Find a flag of ideals as in Corollary B. Relative to a basis (x….xn) of L for which  

(x1,…. xi) spans Li, the matrices of ad L lie in t(n, F). 

Therefore the matrices of [ad L, ad L] = ad, [LL] lie in n(n, F), the derived algebra of t(n, 

F). It follows that ad, x is nilpotent for x E [LL]; a fortiori x is nilpotent, so [LL] is nilpotent  
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by Engel's Theorem.  

 

4.2. Jordan-Chevalley decomposition 

In this subsection only, char F may be arbitrary. We digress in order to introduce a very 

useful tool for the study of linear transformations. The reader may recall that the Jordan 

canonical form for a single endomorphism x over an algebraically closed field amounts to 

an expression of x in matrix' form as a sum of blocks 

 

 

 

 

 

 

 

 

 

Since diag (a,…a) commutes with the nilpotent matrix having one's just above the 

diagonal and zeros elsewhere, x is the sum of a diagonal and a nilpotent matrix which 

commute. We can make this decomposition more precise, as follows. 

Call x ∈ End V (V finite dimensional) semisimple if the roots of its minimal polynomial 

over F are all distinct. Equivalently (F being algebraically closed), x semisimple if and 

only if x is diagonalizable. We remark that two commuting semisimple endomorphisms 

can be simultaneously diagonalized; therefore, their sum or difference is again 

semisimple (Exercise 5). Also, if x is semisimple and maps a subspace W of V into itself, 

then obviously the restriction of x to W is semisimple. 

Proposition. Let V be a finite dimensional vector space over F, x ∈ End V. 

(a) There exist unique x5, xn ∈ End V satisfying the conditions: x = xs+xn x, is 

semisimple, xs is nilpotent, xs, and xn commute. 

(b) There exist polynomials p (T), q (T) in one indeterminate, without constant term, such 

that x, = p(x),x. = q(x). In particular, x, and x,, commute with any endomorphism 

commuting with x. 

(c) If A c B c V are subspaces, and x maps B into A, then x, and x„ also map B into A. 
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The decomposition x = xs+x„ is called the (additive) Jordan-Chevalley decomposition of  

x, or just the Jordan decomposition; x„ x,, are called (respectively) the semisimple part 

and the nilpotent part of x. 

Proof. Let a1… ak (with multiplicities m1…. mk) be the distinct eigenvalues of x, so the 

characteristic polynomial is ri(T-a1)
m1

.If V1=Ker (x-ai.1)
mi

, then V is the direct sum of the 

subspaces V1…..Vk each stable  under x. Onx clearly has characteristic polynomial  

(T- ai)m
i 
. Now apply the Chinese Remainder Theorem (for the ring F[T]) to locate a 

polynomial p(T) satisfying the congruences, with pairwise relatively prime moduli: p(T) s 

al (mod (T-ai)
mi

), p(T) = 0 (mod T.) (Notice that the last congruence is superfluous if 0 is 

an eigenvalue of x, while otherwise T is relatively prime to the other moduli.) Set q(T) = 

T - p(T). Evidently each of p(T), q(T) has zero constant term, since p(T) 0 (mod T). 

Set x, = p(x), x„ = q(x). Since they are polynomials in x, xs and x„ commute with each 

other, as well as with all endomorphisms which commute with x. They also stabilize all 

subspaces of V stabilized by x, in particular the V„ The congruence p(T) = a; (mod (T-

ai)'") shows that the restriction of x.-a• I to Vi is zero for all i, hence that x, acts diagonally 

on V; with single eigenvalue al. By definition, x„ = x-xs, which makes it clear that xn is 

nilpotent. Because p(T), q(T) have no constant term, (c) is also obvious at this point. 

It remains only to prove the uniqueness assertion in (a). Let x = s + n ,be another such 

decomposition, so we have xs-s = n-xn Because of (b), all endomorphisms in sight 

commute. Sums of commuting semisimple (resp. nilpotent) endomorphisms are again 

semisimple (resp. nilpotent), whereas only 0 can be both semisimple and nilpotent. This 

forces s = xs n = xn. 

To indicate why the Jordan decomposition will be a valuable tool, we look at a special 

case. Consider the adjoint representation of the Lie algebra gI( V), V finite dimensional. If 

x ∈ gI( V) is nilpotent, then so is ad x (Lemma 3.2). Similarly, if x is semisimple, then so is 

ad x. We verify this as follows. Choose a basis (vi… vn.) of V relative to which x has 

matrix diag (a1…an) 

Let {eij} be the standard basis of gl(V) (1.2) relative to (v1 … vn): eij(vk) = 8.jkvi. Then a 

quick calculation (see formula (*) in (1.2)) shows that ad x (eij) = (ai- aj)eij. So ad x has 

diagonal matrix, relative to the chosen basis of gl( V). 

Lemma A. Let x ∈ End V (dim V < oo), x = xs+xn its Jordan decomposition. Then ad x = 

ad xs+ad xs is the Jordan decomposition of ad x (in End (End V)). 
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Proof We have seen that ad xs ad xn are respectively semisimple, nilpotent; they  

commute,since [adxs adxn.] = ad [xs xn ]=0. Then part (a) of the proposition applies. 

A further useful fact is the following. 

Lemma B. Let V be a finite dimensional F-algebra. Then Der V contains the semisimple 

and nilpoten: parts (in End V) of all its elements. 

Proof If S ∈ Der V, let a, v E End 91 be its semisimple and nilpotent parts, respectively. It 

will be enough to show that a ∈ Der V. If a ∈ F, set Va = {x ∈ v| a.1)
k
 x = 0 for some  

k (depending on x)}. Then V is the direct sum of those V„ for which a is an eigenvalue of 8 

(or a), and a acts on V
a
Vb. as scalar multiplication by a. We can verify, for arbitrary a, b ∈ 

F, that Va.Vb ⊂ a+b, by means of the general formula: (*) (6 - (a + b).1)"(xy) 

 

4.1. Killing form 

 
4.1.1. Criterion for semisimplicity 

 

Let L be any Lie algebra . if 𝑥,𝑦 Є L define ᴋ (𝑥, 𝑦) = Tr (ad 𝑥 ad 𝑦).Then ᴋ is a symmetric 

bilinear form on L , called the Killing form . ᴋ is also associative , inthe sense that  

ᴋ ([𝑥, 𝑦], 𝑧) = ᴋ (𝑥, [𝑦, 𝑧]) . 

Tr ([𝑥, 𝑦], 𝑧) = Tr (𝑥, [𝑦, 𝑧]) for endomorphisms  , 𝑦 , 𝑧 of finite dimensional vector space. 

 

Lemma 4.1.1.1 

Let I be an ideal of L . If ᴋ is the Killing form of L and ᴋ1 the killing form of I (viewed as 

Lie algebra), then ᴋ I = ᴋ|I × I. 

 

Proof 

First , a simple fact from linear algebra : If W is a subspace of a finite dimensional vector 

space V , and ф an endomorphism of V mapping V into W, then Tr ф = Tr (ф|W ). Now if 

𝑥, Є I , then (ad 𝑥)(ad 𝑦) is an endomorphism of L ,mapping L into I , so its trace ᴋ(𝑥, 𝑦) 

coincides with the trace ᴋI (𝑥, 𝑦) of 

(ad 𝑥)(ad 𝑦)|I = (adI  )(ad I 𝑦). 

Hence the proof. 
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Definition 4.1.1.1 

A symmetric bilinear form β(𝑥, 𝑦) is called non degenerate if its radical S is 0 where  

S = {𝑥 Є L / β(𝑥, 𝑦) = 0 ⩝ 𝑦 Є L }.Because the Killing form is associative , its radical is 

more than just a subspace : S is an ideal of L. 

Fix a basis 𝑥1,...,n of L . Then ᴋ is non degenerate iff the 𝑛 × 𝑛 matrix whose 𝑖, entry is 

ᴋ (𝑥i , 𝑥j) has nonzero determinant. 

 

Cartan’s Criterion 

"Let L be a sub algebra of (V ), V finite dimensional. Suppose that 

Tr (𝑥𝑦) = 0 ⩝ 𝑥 Є [L, L ] , 𝑦 Є L . Then L is solvable ". 

Proof. As remarked at the beginning of (4.3), it will suffice to prove that [LL] is 

nilpotent, or just that all x in ILL] are nilpotent endomorphisms (Lemma 3.2 and 

Engel's Theorem). For this we apply the above lemma to the situation : V as given, 

A = [LL], B = L, so M = {x Є g1( V)I[x, L] c [LL] }. Obviously L ⊂ M. Our 

hypothesis is that Tr(xy) = 0 for x Є [LL], y Є L, whereas to conclude from the 

lemma that each x Є [LL] is nilpotent we need the stronger statement: Tr(xy) = 0 for 

x Є [LL], y Є M. 

Now if [x, y] is a typical generator of [LL], and if z e M, then identity (*) above shows 

that Tr([x, y]z) = Tr(x[y, z]) = Tr([y, z]x). By definition of M, [y, z] e [LL], so the 

right side is 0 by hypothesis. 

 

Theorem 4.1.1.2 

Let L be a Lie algebra . Then L is semisimple iff its Killing form is non degenerate. 

 

Proof 

Suppose first that Rad L = 0. Let S be the radical of ᴋ. By definition, 

Tr (ad 𝑥 ad 𝑦) = 0 ⩝ 𝑥 Є S , 𝑦 Є L . According to Cartan’s criterion, adL S is solvable, 

hence S is solvable. Since S is an ideal of L , 

so S ⊂ Rad L = 0 ,and ᴋ is non degenerate. 

Conversely, let S = 0. To prove that L is semisimple, it will suffice to prove that every 

abelian ideal I of L is induced in S . Suppose 𝑥 Є I , 𝑦 Є L . Then ad 𝑥 ad 𝑦 maps  
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L → L → I , and (ad 𝑥 ad 𝑦)
2
 maps L into [I , I ] = 0. This means that 

ad 𝑥 ad 𝑦 is nilpotent, hence that 

0 = Tr (ad 𝑥 ad  ) = ᴋ (𝑥, 𝑦), so I ⊂ S = 0. 

 

4.1.2 Simple ideals of L 

 
Definition 4.1.2.1 

A Lie algebra L is said to be the direct sum of ideals I 1,...,I t provided L = I 1+...+I t 

 (direct sum of subspaces). This condition forces 

[I𝑖, I𝑗] ⊂ I𝑖 ∩I 𝑗 = 0 if 𝑖 ≠  . We write L = I1 ⨁... ⨁ It. 

 

Theorem 4.1.2.1 

Let L be semisimple. Then there exist ideals L 1,...,L t of L which are simple (as Lie 

algebras), such that L = L1 ⨁ ... ⨁ Lt. Every simple ideals of L coincides with one of the 

L𝑖. Moreover, the Killing form of L𝑖 is the restriction of ᴋ to L𝑖 ×L𝑖. 

 

Proof 

As a first step, let I be an arbitrary ideal of L . Then 

I ˔ = {𝑥 Є L |ᴋ (𝑥, 𝑦) =0 ⩝ 𝑦 ЄI + is also an ideal, by the associativity of ᴋ. 

Cartan’s Criterion, applied to the Lie algebra I , shows that the ideal I ∩I ˔of L is solvable 

(hence 0). Therefore, since dim I +dim I ˔= dim L , we must have L = I ⨁I ˔. 

Now proceed by induction on dim L to obtain the desired decomposition into direct sum of 

simple ideals. If L has no nonzero proper ideals, then L is simple already and we are done. 

Otherwise let L1 be a minimal nonzero ideal ; by the preceding paragraph, L = L1 ⨁ L1˔. In 

particular, any ideal of L1 is also an ideal of L, so L1 is semisimple. For the same reason, L 

1˔ is semisimple; by induction, it splits into a direct sum of simple ideals, which are also 

ideals of L. 

The decomposition of L follows. 

Next we have to prove that these simple ideals are unique. If I is any simple ideal of L , 

then [I, L ] is also an ideal of I , nonzero because Z (L ) = 0; this forces [I, L ] = I . On the 

other hand, [I, L ] = [I, L 1] ⨁ ... ⨁[I, L t], so all but one summand must be 0 . Say 
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[I, L𝑖 = I. Then I ⊂ L𝑖, and I = L 𝑖 (because L𝑖 is simple). The last assertion of the theorem 

follows from lemma 4.1.1.1. 

Hence the proof. 

 

4.1.3. Inner derivations 

 
Observation : (*) [δ, ad 𝑥] = ad (δ𝑥) , 𝑥 Є L , δ Є Der L . 

 

Theorem 4.1.3.1 

If L is semisimple , then ad L = Der L (i.e., every derivation of L is inner ). 

 

Proof 

Since L is semisimple, Z (L ) = 0 . Therefore, L → ad L is an isomorphism of Lie algebras. 

In particular, M = ad L itself has non degenerate Killing form. If D = Der L , we just 

remarked that [D, M] ⊂ M . This implies that ᴋM is the restriction to M × M of the Killing 

form ᴋD of D. In particular, if I = M ˔ is the subspace of D orthogonal to M under ᴋD, then 

the non degeneracy of ᴋM forces I ∩ M = 0. Both I and M are ideals of D , so we obtain 

[I, M] = 0 .If δ Є I , this forces ad (δ𝑥) = 0 ⩝ 𝑥 Є L (by (*) ), so in turn δ𝑥 = 0 

( x Є L ) because ad is one to one and δ = 0. 

Conclusion: I = 0, Der L = M = ad L . 

Hence the proof. 

 

4.1.4. Abstract Jordan decomposition 

Proposition 4.1.4.1 

Let V be a finite dimensional vector space over F, 𝑥 Є End V. 

a) There exist unique 𝑥s, 𝑥𝑛 Є EndV satisfying the conditions: 𝑥= 𝑥s+𝑥𝑛, 𝑥s is semisimple, 

𝑥n is nipotent ,s and 𝑥𝑛 commute. 

b) There exist polynomials p(T ) , q(T ) in one indeterminate , without constant term,  

𝑥s = p(𝑥) , 𝑥𝑛 = q(𝑥). In particular, 𝑥s and 𝑥𝑛 commute with any endomorphism commuting 

with 𝑥. 

c) If A ⊂ B ⊂ V are subspaces and 𝑥 maps B into A, then 𝑥s and 𝑥𝑛 also map B into A. 

The decomposition 𝑥 = 𝑥s + 𝑥𝑛 is called the Jordan – Chevalley decomposition 
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of 𝑥 or just the Jordan decomposition; 𝑥s,𝑥𝑛 are called( respectively) the semisimple part 

and nilpotent part of 𝑥. 

 

Lemma 4.1.4.2 

Let U be a finite dimensional F-algebra. Then Der U contains the semisimple and nilpotent 

parts( in End U ) of all its elements. 

 

Abstract Jordan decomposition 

In particular, since Der L coincides with ad L while L → ad L is one to one each 𝑥 Є L 

determines unique elements s, Є L such that ad 𝑥 = ad s + ad 𝑛 is the usual Jordan 

decomposition of ad 𝑥 (in End L ). This means that 𝑥 = s + 𝑛, 

with [s, 𝑛] = 0, s ad-semisimple(i.e., ad S semisimple ), 𝑛 ad-nilpotent. 

 

We write s = 𝑥s , 𝑛 = 𝑥𝑛 , and call these the semisimple and nilpotent parts of 𝑥. 

The abstract decomposition of 𝑥 just obtained does in fact agree with the usual Jordan 

decomposition in all such cases. 

 

4.2. Complete reducibility of reprsentations 

 
4.2.1. Modules 

A vector space V, endowed with an operation L ×V →V (denoted (𝑥, 𝑣) ↦ 𝑥.𝑣 or just) is 

called an L-module if the following conditions are satisfied. 

M1: (a𝑥+ b𝑦).𝑣 = a(𝑥.𝑣) + b(𝑦.𝑣) 

M2: 𝑥.(a𝑣 + b𝑤) = a (𝑥.𝑣) + b(𝑥.𝑤) 

M3: [𝑥, 𝑦].𝑣 = 𝑥.𝑦.𝑣 – 𝑦.𝑥.𝑣 

( ,𝑦 Є L ; 𝑣,𝑤 Є V ; a,b Є F ) 

For example, if ф: L → (V) is a representation of L, then V may be viewed as an L -

module via the action 𝑥.𝑣 = ф(𝑥) (𝑣). 

Conversely, given an L -module V, this equation defines a representation 

ф: L → (V ) . 

A homomorphism of L- modules is a linear map ф: V →W such that ф(𝑥.𝑣) = 𝑥.ф(𝑣).  

The kernel of such a homomorphism is then an L-submodule of V. When ф is an 

isomorphism of vector spaces, we call it an isomorphism of L -modules; in this case the  
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two modules are said to afford equivalent representation of L. An L -module V is called 

irreducible if it has precisely two L -submodules. 

V is called completely reducible if V is a direct sum of irreducible 

L -submodules. 

 

Lemma 4.2.1.1 (Schur’s Lemma ) 

Let ф: L → (V ) be irreducible. Then the only endomorphisms of V commuting with all 

ф(𝑥) (𝑥 Є L ) are the scalars. 

 

4.2.2. Casimir element of a representation 

 

Let L be semisimple and let ф: L →(V ) be faithful (i.e., one to one) representation of L . 

Define a symmetric bilinear form β(𝑥, 𝑦) = Tr ( ф(𝑥) ф(𝑦) ) on L . The form β is  

 

associative, so in particular its radical S is an ideal of L. Moreover β is non degenerate and 

by Cartan’s Criterion we have ф(S ) ≅ S is solvable. So, S = 0. Now let L be semisimple, 

β any non degenerate symmetric associative bilinear form on L. If (𝑥1,2,...,𝑥𝑛) is a basis of  

L , there is a uniquely determined dual basis (𝑦1,𝑦2,...,𝑦𝑛) relative to β, satisfying  

β(𝑥𝑖,𝑦𝑗) = δ𝑖𝑗 . If 𝑥 Є L , we can write 

[𝑥, 𝑥𝑖] = Σ𝑗 a 𝑖𝑗 𝑥𝑗 and [𝑥, 𝑦𝑖] = Σ𝑗 𝑏𝑖𝑗 𝑦𝑗. 

Using the associativity of β, we compute 

a𝑖𝑘 = Σ𝑗 𝑎𝑖𝑗 β(𝑥𝑗,𝑦𝑘) = β([𝑥, 𝑥𝑖],𝑦𝑘) 

= β(-[𝑥𝑖 ,𝑥], 𝑦𝑘) = β(𝑥𝑖,-[𝑥, 𝑦𝑘]) 

= -Σ𝑗 𝑏𝑘𝑗β(𝑥𝑖,𝑦𝑗) 

= - b𝑘𝑖 

If ф:L → 𝔤𝔩(V ) is any representation of L , write c ф(β ) = Σ𝑖 𝜙(𝑥𝑖)𝜙(𝑦𝑖) Є End V. 

Using the identity (in End V), [𝑥, 𝑦𝑧] = [𝑥, 𝑦] + [𝑥, 𝑧] and the fact that a𝑖𝑘 = - b𝑘𝑖,  

we obtain: 

[ф(𝑥), c ф(β)] = Σ[𝜙(𝑥), 𝜙(𝑥𝑖)] 𝜙(𝑦𝑖) + Σ𝑖 𝜙(𝑥𝑖) [ 𝜙(𝑥), 𝜙(𝑦𝑖)] 

= Σ𝑖, 𝑎 𝑖(𝑥𝑗) 𝜙(𝑦𝑖) + Σ𝑖,𝑗 𝑏𝑖𝑗 𝜙 (𝑥𝑖) 𝜙(𝑦𝑗) = 0 . 

i.e., c ф(β) is an endomorphism of V commuting with ф(L ). We can conclude that, 

Let ф: L → (V ) be a faithful representation with trace form 
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β(𝑥, 𝑦) = Tr (ф(𝑥) ф(𝑦) ). In this case, having fixed a basis (𝑥1,2,...,𝑥𝑛) of L, we write 

simply c ф for c ф(β) and call this the Casimir element of ф . 

Its trace is 

Σ 𝑖 ((𝑥𝑖) 𝜙(𝑦𝑖)) = Σ𝑖 𝛽(𝑥𝑖,𝑦𝑖) = dim L. 
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CONCLUSION 

 

Lie Algebra arises naturally in the study of mathematical called Lie groups which serves as 

groups of Transformations on spaces with certain symmetries. Also introduced the basic 

concepts and some algebraic facts related to Lie Algebra. In this project we gave a 

collection of typical examples of Lie Algebra and introduced the basic vocabulary of Lie 

Algebra. We discussed solvability, nilpotency and semi simple Lie Algebras which plays 

an important role in the study of Lie Algebra. 

     Lie Algebra plays a fundamental role in modern 

mathematical physics. When focus on the recent advances in the applications of Lie 

Algebra, we can see it covered a wide areas of topics in interdisciplinary studies in 

mathematics, mechanics, physics and finance. Based on the linear structure of Lie Algebra, 

many statistical learning methods can be readily applied. 
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