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ABSTRACT 

 

Elliptic Curves are the curves that’s also naturally a group. From an elliptic curve, we can 

construct an algebra by adding, doubling and multiplying points.  Its group structure helps to 

describe the various notion of mathematics. Those features of Elliptic curve are discussed in 

chapter 1.  Elliptic curves hold different structures in various field. In chapter 2 and 3, we 

focus on the behavior of Elliptic curves in finite and complex field respectively. In a finite 

field, we can compute the points on the elliptic curve. A point is simply a pair (x, y) that 

satisfies the equation of the curve. Since there is a finite number of units in the field, there 

must be a finite number of unique points on the curve. This number is known as the order of 

the curve.  For various cryptographic reasons, we desire that the order be a large prime, or 

have a large prime as one of its factors. For Complex field, we can reduce from the 

Weirstrass equation of elliptic curves that, complex tori are isomorphic to complex elliptic 

curves. 

 In Chapter 4 and 5 we discussed about Elliptic curve cryptography and Elliptic curve 

discrete logarithm problem. Elliptic curves started being used in cryptography and elliptic 

curve techniques were developed for factorization and primality testing. Elliptic curve 

cryptography (ECC) is one of the strongest algorithms in cryptography. ECC provides higher 

security in small keys in faster mode than other cryptographic algorithms. Elliptic curve 

discrete logarithm problem (ECDLP) is the hard problem supports ECC. The well-known 

attack to ECDLP is Pollard’s rho algorithm. Other than Cryptography we have seen that 

elliptic curves are used for factorization and Primality testing. Chapter 7 gives these 

applications of elliptic curves. For any composite number n elliptic curve factorization 

method gives the factors of n. And there exist theorems using elliptic curves that provide the 

characteristic of a prime number. 
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INTRODUCTION 

 

An elliptic curve over a field K is a non-singular complete curve of genus 1 with a 

distinguished point. Elliptic curves have been objects of intense study in Number Theory for 

the last 90 years. To quote “It is possible to write endlessly on Elliptic Curves (This is not a 

threat).” (Miller in Crypto 85). An important feature of an elliptic curve is their points have 

the structure of an abelian group. This feature makes theory of elliptic curves more 

interesting with links to various notions of mathematics. Elliptic curves appear in many 

diverse areas of mathematics, ranging from number theory to complex analysis, and from 

cryptography to mathematical physic Although the problem to find the points of an elliptic 

curve with rational numbers as coordinates fascinated many mathematicians since the time of 

the ancient Greeks, it was not until 1922 that it was proved that it is possible to construct all 

the points of an elliptic curve.  

Cryptography is one of the main fields where research is done. Researchers spent 

quite a lot of time trying to explore cryptographic systems based on more reliable trapdoor 

functions and in 1985 succeeded by discovering a new method, namely the one based on 

elliptic curves which were proposed to be the basis of the group for the discrete logarithm 

problem. Researchers believe that elliptic curves guarantee more security and provide with 

much smaller key sizes than other groups. 

  Elliptic curve discrete logarithm problem (ECDLP) was brought into spot light along 

with the introduction of elliptic curve cryptography independently by Koblitz and Miller in 

1985. If the elliptic curve groups is described using multiplicative notation, then the elliptic 

curve discrete logarithm problem is: given points P and Q in the group, find a number that  

Pk = Q; k is called the discrete logarithm of Q to the base P. When the elliptic curve group is 

described using additive notation, the elliptic curve discrete logarithm problem is: given 

points P and Q in the group, find a number k such that Pk = Q. The main goal of this project 

is to learn about elliptic curves over finite field and C , elliptic curve cryptography and 

elliptic curve discrete logarithm problem. 
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PRELIMINARIES 

 

Projective plane curve 

A (projective plane algebraic) curve (over K) is a non-constant homogeneous polynomial 

F ∈  K[x, y, z]. We call V (F) = {(x,y) ∈  P2 : F(x,y) = 0} its set of points. 

Genus 

Broadly, the genus of a curve is the number of handles added to a sphere.  A sphere has genus 

g = 0.  A torus has genus g = 1. 

Non singular 

Let P=(a,b) ∈  E(K). If at least one of the partial derivatives  is nonzero at P, then P is 

said to be nonsingular 

Point of inflection 

A point of inflection is a point at which the graph of y = f (x) has a tangent line and where the 

concavity changes. So, if f is twice–differentiable, then f has a Point of Inflection where y 

changes sign. A point of inflection on an elliptic curve is, similarly, a point (x, y) on the curve 

where y is defined and changes sign. 

Homomorphism 

A homomorphism is a structure-preserving map between two algebraic structures of the same 

type such as two groups, two rings, or two vector spaces. 

Automorphism 

An automorphism is a structure preserving map from an algebraic structure to itself.  

Frobenius endomorphism 

Let R be a commutative ring with prime characteristic p. The Frobenius morphism F is 

defined by  

F (r) = rp for all r in R. 
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Galois group 

Suppose that E is an extension of the field F (written as E / F and read "E over F "). An 

automorphism of E / F is defined to be an automorphism of E that fixes F pointwise. In other 

words, an automorphism of E / F is an isomorphism α : E → E such that α ( x ) = x for each x 

∈  F . The set of all automorphisms of E / F forms a group with the operation of function 

composition. This group is sometimes denoted by Aut( E / F ) . If E / F is a Galois extension, 

then Aut( E / F ) is called the Galois group of E / F . A Galois extension is an algebraic field 

extension E/F that is normal and separable; or equivalently, E/F is algebraic, and the field 

fixed by the automorphism group Aut(E/F) is precisely the base field F. 

Inseperable Extension 

In algebra, a purely inseparable extension of fields is an extension k ⊆ K of fields of 

characteristic p > 0 such that every element of K is a root of an equation of the form xq = a, 

with q a power of p and a in k. 

Height of Formal group 

Let f be a formal group law over a commutative ring R, and fix a prime number p. We let  

vn denote the coefficient of tpn  p-series [p]. We will say that f has height ≥ n if vi = 0 for i < n. 

We will say that f  has height exactly n if it has height ≥ n and vn ∈  R is invertible. 

Homothetic Lattices 

Lattices L and M in C are homothetic if there is a complex number λ such that M = λL. 
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1. INTRODUCTION TO ELLIPTIC CURVES 

 

1.1 Elliptic Curves 

Definition: Let K be a perfect field. An Elliptic Curve over K can be defined as, 

(a) a nonsingular projective plane curve E over K of degree 3 together with a point         

O ∈  E(K) 

(b) same as (a) except that O is required to be a point of inflection. 

(c) A non-singular projective plane curve of the form 

 

(d) a nonsingular projective curve E of genus 1 together with a point O ∈  E(K). 

Let (E, O) be as in (b); we can show that a linear change of variables will carry E into the 

form (c) and O into the point (0:1:0) as, let (a: b: c) ∈  P2(K) and assume b ≠ 0. The regular 

map  

(x : y: z) ↦ (bx-ay :by :bz-cy) : P2 ↦ P2  

sends (a: b: c) to (0 :b2 :0) = (0 :1 :0) and is an isomorphism (it has an inverse of a similar 

form). If b = 0, but c ≠ 0, we first interchange the y and z coordinates. Thus, we may suppose 

(0 :1 :0). Conversely, let E be as in (c); then O = (0:1:0) ∈  E(K) and is a point of inflection. 

For the curve in (c), if Z=0, then we get X3=0 , thus X=0 is a solution. Thus we get 

(0:Y:0)=(0:1:0) ,an intersecting point of the curve with the line of infinity Z=0. Thus, The 

point O(0:1:0) is known as Point at Infinity. 

Proposition 1.1 

Let E be an elliptic curve defined over K. 

 (a) There exist functions x,y ∈  K(E) such that the map φ : E → P2, φ = [x,y, 1], gives an 

isomorphism of E/K onto a curve given by a Weierstrass equation  

 with coefficients a1,...,a6 ∈  K and 

satisfying φ(O) = [0, 1, 0]. The functions x and y are called Weierstrass coordinates for the 

elliptic curve E.  
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(It is explained in section 1.3) 

(b) Any two Weierstrass equations for E as in (a) are related by a linear change of variables 

of the form 

, with u ∈  K* and r,s,t ∈  K. 

 (c) Conversely, every smooth cubic curve C given by a Weierstrass equation as in (a) is an 

elliptic curve defined over K with base point O = [0, 1, 0]. 

 

Examples: 

 

Every point in an elliptic curve E is either of finite order or of infinite order. Let P be a point  

in E, if there exist a m in Z such that mP=0, then P is said to have finite order. If there doesn't 

exist such an m in Z, then P has infinite order. By infinite order we mean that, we never get 

point of infinity after any n summands of P. 

 

1.2 Geometry of elliptic curves 

Let E be an Elliptic curve in K. Then E consist of a point P(x,y) satisfies the cubic equation 

together with the point at infinity. Let L be a line in K. Since the equation is third degree L 

intersects E at exactly 3 points. 
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Composition Law 

Let P,Q ∈  E, let L be the line through P and Q (if P = Q, let L be the tangent line to E at P), 

and let R be the third point of intersection of L with E. Let L’ be the line through R and O. 

Then L’ intersects E at R, O, and a third point. We denote that third point by P ⊕ Q 

Proposition 1.2 

The composition law  has the following properties: 

 (a) If a line L intersects E at the (not necessarily distinct) points P,Q,R,                                

then (P ⊕ Q) ⊕ R = O.  

(b) P ⊕ O = P for all P ∈  E. 

 (c) P ⊕ Q = Q ⊕ P for all P,Q ∈  E. 

 (d) Let P ∈  E. There is a point of E, denoted by -P, satisfying P ⊕ (-P) = O.  

(e) Let P,Q,R ∈  E. Then (P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R). 

In other words, the composition law  makes E into an abelian group with identity element O. 

Further:  

(f) Suppose that E is defined over K.  

Then E(K) = { (x,y) ∈  K2 : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 } ∪  {O} is a subgroup of E. 

 

Illustration: 

Consider the elliptic curve E. Let P and Q be two points on E. Let L be the line through P and 

Q. L meets E at a third point say R. The vertical line through R hits E at another point.  

We define it as the sum of P and Q, and is denoted by P ⊕ Q. 
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We can add P to itself. Since there are so many lines possible through P, we consider the 

tangent line through P which intersects E. So here L is the tangent line of E through P. L 

meets E at R and the reflected point of R gives P ⊕ P or 2P. 

 

 

The vertical line through P and –P does not meet at the third point. So, we create an extra 

point on that line O called ‘Point at Infinity’ to define P ⊕ (-P). 
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 1.3 Isogeny 

Definition: Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a morphism             

φ: E1 → E2 satisfying φ(O) = O. Two elliptic curves E1 and E2 are isogenous if there is an 

isogeny from E1 to E2 with    φ(E1) ≠ {O}. 

Elliptic curves are abelian groups, so the maps between them form groups. We denote the set 

of isogenies from E1 to E2 by Hom(E1, E2) = {isogenies E1 → E2}.  

The sum of two isogenies is defined by (φ + ψ)(P) = φ(P) + ψ(P) implies that φ+ψ is a 

morphism, so it is an isogeny. Hence Hom(E1, E2) is a group.  

If E1 = E2, then we can also compose isogenies. Thus if E is an elliptic curve, we let      

End(E) = Hom(E,E) be the ring whose addition law is as given above and whose 

multiplication is composition,  

(φψ)(P) = φ (ψ(P)) 

The ring End(E) is called the endomorphism ring of E. The invertible elements of End(E) 

form the automorphism group of E, which is denoted by Aut(E).If E1, E2 and E are defined 

over a field K, then we can restrict attention to those isogenies that are defined over K. The 

corresponding groups of isogenies are denoted with the usual subscripts; thus HomK (E1,E2), 

EndK (E), AutK (E). 
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1.4 Weierstrass equation for an Elliptic curve 

Let E be an elliptic curve over K. Any equation of the form 

 is called a Weierstrass equation for the 

elliptic curve.  

To ease notation, we generally write the Weierstrass equation for our elliptic curve using 

non-homogeneous coordinates x = X/Z and y = Y/Z, 

  

always remembering that there is an extra point O = [0, 1, 0] out at infinity. As usual, if 

a1,a2,…,a6 ∈  K, then E is said to be defined over K. If char(K) ≠ 2, then we can simplify the 

equation by completing the square. Thus the substitution 

 

gives an equation of the form 

  

Where,  

We also define the quantities 

 

These satisfies 

 and  

If further char(K) ≠  2, 3, then the substitution eliminates x2 term and we get, 
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The quantity Δ is the discriminant of the Weierstrass equation, the quantity j is the j-invariant 

of the elliptic curve, and ω is the invariant differential associated to the Weierstrass equation. 

 Let P = (x0,y0) be a point satisfying a Weierstrass equation 

 and assume that P is a singular point. 

Then we have It follows that there are α,β ∈  K such that the Taylor 

series expansion of E at P has the form 

  

With notation as above, the singular point P is a node if α ≠ β. In this case, the lines                

y − y0 = α(x− x0) and y − y0 = β(x − x0) are the tangent lines at P. Conversely, if α = β, then 

we say that P is a cusp, in which case the tangent line at P is given by y − y0 = α(x − x0). 

A Weierstrass equation is in Legendre form if it can be written as y2 = x(x − 1)(x − λ). 

Assume that char(K) ≠ 2.Then, Every elliptic curve is isomorphic (over K ) to an elliptic 

curve in Legendre form Eλ : y2 = x(x − 1)(x − λ) for some λ ∈  K with λ = 0, 1. 

Since Char(K) ≠ 2, we know that E has a weirstrass equation of the form 

 

Replacing (x,y) by (x,2y) and factorizing ,we get, 

 y2 = (x − e1)(x − e2)(x − e3) where e1 ,e2, e3  ∈  K 

 since Δ = 16(e1 − e2)2(e1 − e3)2 (e2 − e3)2 ≠ 0, we see that the ei ’s are distinct. Now the 

substitution x = (e2 − e1)x’ + e1, y = (e2 − e1)3/2y’ gives an equation in Legendre form with      

λ = (e3 − e1 )/(e2 − e1) ∈  K, λ ≠ 0, 1. 

Take an elliptic curve E/Q and write it in Weierstrass form y2 = x3 + ax + b. The j-invariant is 

given by . 
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2. ELLIPTIC CURVES OVER A FINITE FIELD 

 

2.1 No of Rational Points 

Let E/Fq be an elliptic curve defined over a finite field. Here we try to determine the number 

of points in E(Fq) or equivalently the number of solutions to the equation 

 with (x, y) ∈  Fq
2

 

 

Theorem 2.1 (Hasse) 

Let E/Fq be an elliptic curve defined over a finite field. Then  

| # E(Fq) - q –1|≤ 2 √q 

Proof: Choose a Weierstrass equation for E with coefficients in Fq, and let φ: E → E, (x,y) → 

(xq,yq), be the qth-power Frobenius morphism. Since the Galois group GFqal /Fq is 

(topologically) generated by the qth-power map on Fq, we see that for any point P ∈  E(Fq 
al), 

P ∈  E(Fq) if and only if φ(P) = P. Thus E(Fq) = ker(1 − φ), So we can find that, 

#E(Fq) = #ker (1 − φ) = deg (1 − φ). 

Since the degree map on End(E) is a positive definite quadratic form and since deg φ = q, we 

get the result by the theorem, Let A be an abelian group, and let d: A → Z be a positive 

definite quadratic form. Then for all ψ,φ ∈  A, 

 

 

Remark: Hasse’s theorem gives a bound for the number of points in E(Fq), but it does not 

provide a practical algorithm for computing # E(Fq) when q is large. 

Example 

Let Fq be a finite field with q odd. We can use Hasse’s result to estimate the value of certain 

character sums on Fq. Thus let 
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be a cubic polynomial with distinct roots in Fq
al, and let χ : Fq

*  → {±1} be the unique 

nontrivial character of order 2, i.e., χ(t) =1 if and only if t is a square in Fq
* . Extend χ to Fq

 by 

setting χ(0) = 0. We can use χ to count the Fq -rational points on the elliptic curve E : y2 = f(x) 

Each x ∈  Fq yields zero, one, or two points (x,y) ∈  E(Fq) according to whether the value f(x) 

is, respectively, a nonsquare, equal to zero, or a square in Fq. Thus in terms of χ we obtain 

(remember the extra point at infinity) 

 

With notation as above, 

 

 We note that the sum shown above consists of q terms, each of which is ±1, so it says that as 

x runs through Fq, the values of the cubic polynomial f(x) tend to be equally distributed 

between squares and nonsquares. Indeed, if one takes a random sequence ( ε1 ,ε2 ,.... εq ) of 

ones and negative ones, then the expected value of | ε1 + ε2 +.... +εq |2 is q, so the equation 

says that the set of values of     looks like a random sequence. 

2.2 Supersingular Elliptic Curve 

Definition: A point P ∈  E is called a torsion point of order n if P has order n. Gathering all of 

the torsion points of a an elliptic curve C will form a finite subgroup of E, called Etor: 

 Etor = {P ∈  E| P has finite order} ⊆ E. 

Let K be a (not necessarily finite) field of characteristic p, and let E/K be an elliptic curve. 

We know that there are two possibilities for the group of p-torsion points E[p], namely 0 and 

Z/pZ.  

Theorem 2.2 

Let K be a field of characteristic p, and let E/K be an elliptic curve. For each integer r ≥ 1, let 

φr : E → E(pr) and φ^r : E(pr) → E be the pr -power Frobenius map and its dual.  



20 

 

(a) The following are equivalent. 

  (i) E[pr]=0 for one (all) r ≥ 1.  

(ii) φ^r is (purely) inseparable for one (all) r ≥ 1. 

  (iii) The map [p] : E → E is purely inseparable and j(E) ∈  Fp2 .  

(iv) End(E) is an order in a quaternion algebra.  

(v) The formal group E/K ˆ associated to E has height 2.  

 (b) If the equivalent conditions in (a) do not hold, then E[pr] = Z/ pr Z for all r ≥ 1, and the 

formal group E/K  has height 1. If further j(E) ∈  Fpal, then End(E) is an order of a quadratic 

imaginary field. (For the case that j(E) is transcendental over Fp) 

Definition: If E has the properties given in above theorem, then we say that E is 

supersingular, or that E has Hasse invariant 0. Otherwise, we say that E is ordinary, or that E 

has Hasse invariant 1. 

Or we can say if an elliptic curve over a field of positive characteristic whose formal group 

law has height of a formal group equal to 2 is called a supersingular elliptic curve. Otherwise, 

the height equals 1 and the elliptic curve is called ordinary. 

The next theorem gives a criterion to determine whether the given elliptic curve is 

supersingular or not. 

 

Theorem 2.3 

Let Fq be a finite field of characteristic p ≥ 3.  

(a) Let E/ Fq be an elliptic curve given by a Weierstrass equation  

E : y2 = f(x), where f(x) ∈  Fq [x] is a cubic polynomial with distinct roots in Fq
al. Then E is 

supersingular if and only if the coefficient of xp-1  in f(x)(p-1)/2 is zero.  

(b) Let m = (p − 1)/2, and define a polynomial  
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Let λ ∈  Fq
al with λ ≠ 0, 1. Then the elliptic curve  

E : y2 = x(x − 1)(x − λ) is supersingular if and only if Hp(λ)=0.  

(c) The polynomial Hp(t) has distinct roots in Fq
al. There is one supersingular curve in 

characteristic 3, and for p ≥ 5, the number of supersingular elliptic curves (up to Fq
al -

isomorphism) is  

 

Example 1: 

For p = 11 we have  

H11(t)   = t5 + 3t4 + t3 + t2+ 3t + 1 

= (t2 − t + 1)(t + 1)(t − 2)(t + 5) (mod 11).  

The supersingular j-invariants in characteristic 11 are j = 0 and j = 1728 = 1 

Example 2: 

We compute for which primes p ≥ 5 the elliptic curve E : y2 = x3 + 1 with j = 0 is 

supersingular.  

The criterion in theorem 2.3 says that we need to compute the coefficient of xp-1 in the 

polynomial (x3 + 1)(p-1)/2 .  

If p ≡ 2 (mod 3), then there is no xp-1 term, so E is supersingular.  

On the other hand, if p ≡ 1 (mod 3), then the coefficient of xp-1 is  , which is nonzero 

modulo p, so in this case E is ordinary. 

Example 3: 

we compute for which primes p ≥ 3 the elliptic curve E : y2 = x3 + x with j = 1728 is 

supersingular.  This is determined by the coefficient of x(p-1)/2 in the polynomial (x2 + 1)(p-1)/2. 

This coefficient is equal to 0 if p ≡ 3 (mod 4) and  if p ≡ 1 (mod 4). Hence E is 

supersingular if   p ≡ 3 (mod 4) and ordinary if p ≡ 1 (mod 4). 
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Remark: These examples might suggest that for a given Weierstrass equation with 

coefficients in Z, the resulting elliptic curve is supersingular in characteristic p for half of the 

primes. This is in fact true, provided that the elliptic curve has complex multiplication over 

Qal , as do the j = 0 and j = 1728 curves. 

Example 4: 

 Let E be the elliptic curve given by the equation 

  

So j(E) = -212313 / 115 . Then by the theorem, one finds that the only primes p < 100 for 

which E is supersingular in characteristic p are p ∈  {2, 19, 29}. More generally, D.H. 

Lehmer calculated that there are exactly 27 primes p < 31500 for which E is supersingular. 

Remark: It is not hard to prove that for any elliptic curve E/Q, there are infinitely many 

primes p such that E is ordinary. 

Theorem 2.4 

Let E/Q be an elliptic curve without complex multiplication. Then the set of supersingular 

primes has density 0. More precisely, for every  > 0 we have  

 

Conjecture 2.5 

Let E/Q be an elliptic curve without complex multiplication. Then 

 

 as x → ∞, where c > 0 is a constant depending on E. 

 

Theorem 2.6 

Let E/Q be an elliptic curve without complex multiplication. Then there are infinitely many 

primes p for which E/Fp is supersingular. 



23 

 

 

3. ELLIPTIC CURVES OVER C 

 

3.1 Lattices and Fundamental Parallelogram 

Definition: A lattice in C is the subgroup generated by two complex numbers that are 

linearly independent over R. Thus  

;  

and since neither ω1 nor ω2 is a real multiple of the other, we can order them so 

that . If {ω1’, ω2’}is a second pair of elements of , then 

  

 i.e.,    

 with A a 2 x 2 matrix with integer coefficients. The pair  {ω1’, ω2’} will be a Z-basis for if 

and only if A is invertible and so has determinant ±1. Let z = ω1 / ω2 and z’ = ω1’ / ω2’; then 

 

and so  if and only if det A>0. Therefore, the group SL2 (Z) of matrices with 

integer coefficients and determinant 1 acts transitively on the set of bases {ω1, ω2} for Λ with 

 

Proposition 3.1 

Let M be the set of pairs of complex numbers {ω1, ω2} such that , and let L be 

the set of lattices in C. Then the map 

  induces a bijection SL2 (Z )/M → L 
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Definition: An elliptic function (relative to the lattice Λ) is a meromorphic function f(z) on C 

that satisfies f(z + ω) = f(z) for all z ∈  C and all ω ∈  Λ. The set of all such functions is 

denoted by C(Λ). It is clear that C(Λ) is a field. 

 

Definition: A fundamental parallelogram for Λ is a set of the form D = {a + t1ω1 + t2ω2 : 0 ≤ 

t1 ,t2  < 1}, where a ∈  C and {ω1, ω2} is a basis for Λ. 

 

 

The figure shows a lattice and three fundamental parallelograms. 

3.2 Analytic Maps 

Let Λ1 and Λ2 be lattices in C, and suppose that α ∈  C has the property that αΛ1 ⊂ Λ2 . Then 

scalar multiplication by α induces a well-defined holomorphic homomorphism 

 φα  : C/Λ1 → C/Λ2 ,  φα (z) = αz (mod Λ2) 

Theorem 3.2 

(a) With notation as above, the association  

{α ∈  C : α Λ1 ⊂ Λ2} → { holomorphic maps φ : C/ Λ1 → C/ Λ2 with φ(0) = 0 } 

  α → φα is a bijection. 

(b) Let E1 and E2 be elliptic curves corresponding to lattices Λ1 and Λ2, respectively. Then 

the natural inclusion 
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 {isogenies φ : E1 → E2} → { holomorphic maps φ : C/ Λ1 → C/ Λ2 with φ(0) = 0 } is a 

bijection. 

Corollary 3.3 

Let E1/C and E2/C be elliptic curves corresponding to lattices Λ1 and Λ2  respectively. Then 

E1 and E2 are isomorphic over C if and only if Λ1 and Λ2 are homothetic, i.e., there exists 

some α ∈  C* such that Λ1 = α Λ2. 

Remark: Since the maps φα are clearly homomorphisms, above corollary implies that every 

complex analytic map from E1 (C) to E2 (C) taking O to O is necessarily a homomorphism. 

This is the analytic analogue of the theorem which says that every isogeny of elliptic curves 

is a homomorphism. 

3.3 Weirstrass ℘ function 

The points of an elliptic curve with coordinates in the complex numbers C form a torus.  

The Weirstrass ℘ function gives a way of writing elliptic curves as a torus by C/L → E(C) 

such that z → (℘(z), ½ ℘’(z)) 

Weirstrass ℘ function is given by 
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The Laurent Series expansion of ℘(z) around z = 0 is given by 

 

And for all  z ∈  C/Λ, the Weierstrass ℘-function and its derivative satisfy the relation 

 

Now we can see that the function   

is holomorphic at z = 0 and satisfies f(0) = 0. But f(z) is an elliptic function relative to Λ, and  

it is holomorphic away from Λ, so f(z) is a holomorphic elliptic function. 

Remark: It is standard to notate and  

Then we get 

  

3.4 Uniformization 

Uniformization Theorem 

Let A,B ∈  C be complex numbers satisfying 4A3 − 27B2 ≠ 0. Then there exists a unique 

lattice Λ ⊂ C satisfying g2 (Λ) = A and g3 (Λ) = B 

Corollary 3.4 

Let E/C be an elliptic curve. There exist a lattice Λ ⊂ C, unique up to homothety, and a 

complex analytic isomorphism 

of complex Lie groups. 

Proposition 3.5 

There are natural equivalences between the following categories: 
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(a) Objects: Elliptic curves E over C. 

 Morphisms: Regular maps E → E′ that are homomorphisms. 

(b) Objects: Riemann surfaces E of genus 1 together with a point 0.  

 Morphisms: Holomorphic maps E → E′ sending 0 to 0′.  

(c) Objects: Lattices Λ ⊂ C. 

       Morphisms: Hom(Λ, Λ′) = {α ∈  C | αΛ ⊂ Λ′}. 

We now use the uniformization theorem to make some general deductions about elliptic 

curves over C. 

Proposition 3.6 

Let E/C be an elliptic curve and let m ≥ 1 be an integer. 

 (a) There is an isomorphism of abstract groups   

(b) The multiplication-by-m map [m] : E → E has degree m2. 

Proof: (a) We know that  E(C) is isomorphic to C/Λ for some lattice Λ ⊂ C. Hence 

 

(b) Since char(C)=0 and the map [m] is unramified, the degree of [m] is equal to the number 

of points in E[m]=[m]-1 {O} 

Now let E/C be an elliptic curve then End(E) is a subring of C. Then we get, If  , 

then  

Since Λ is unique up to homothety this ring is independent of the choice of Λ. 

Theorem 3.7 

Let E/C be an elliptic curve, and let ω1 and ω2 be generators for the lattice Λ associated to E. 

Then one of the following is true:  

(i) End(E) = Z. 

(ii) The field Q(ω2/ ω1) is an imaginary quadratic extension of Q, and End(E) is isomorphic 

to an order in Q(ω1/ ω2). 
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4. ELLIPTIC CURVE CRYPTOSYSTEMS 

 

4.1 Elliptic Curve Cryptography 

Elliptic curve cryptography [ECC] is a public-key cryptosystem just like RSA, Rabin, and 

ElGamal. Every user has a public and a private key. Public key is used for encryption/ 

signature verification while Private key is used for decryption/ signature generation. 

The central part of any cryptosystem involving elliptic curves is the elliptic group. All public-

key cryptosystems have some underlying mathematical operation. RSA has exponentiation 

(raising the message or ciphertext to the public or private values) and ECC has point 

multiplication (repeated addition of two points). 

 

 

 

 

 

ECC is based on the properties of a set of values for which operations can be performed on 

any two members of the group to produce a third member, which is derived from points 

where the line intersects the axes as shown with the green line and three blue dots in the 

below diagram labeled A, B and C. Multiplying a point on the curve by a number produces 

another point on the curve (C). Taking point C and bringing it to the mirrored point on the 
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opposite side of the x-axis produces point D. From here, a line is drawn back to our original 

point A, creating an intersection at point E. This process can be completed n number of times 

within a defined max value. The n is the private key value, which indicates how many times 

the equation should be run, ending on the final value that is used to encrypt and decrypt data. 

The maximum defined value of the equation relates to the key size used.  

 

 

4.2 History of ECC 

The properties and functions of elliptic curves in mathematics have been studied for more 

than 150 years. Their use within cryptography was first proposed in 1985, separately by Neal 

Koblitz from the University of Washington and Victor Miller at IBM. 

ECC was first developed by Certicom, a mobile e-business security provider, and was then 

licensed by Hifn, a manufacturer of integrated circuitry and network security products. 

Vendors, including 3Com, Cylink Corp., Motorola, Pitney Bowes, Siemens, TRW Inc. 

(acquired by Northrop Grumman) and Verifone, supported ECC in their products. 

The use of ECC in public and private sectors has increased over the past few years. While 

RSA continues to be more widely used and is easier to understand compared to ECC, the 

efficiency benefits of ECC make it appealing for many enterprise use cases. These include 

speeding up secure access to Secure Sockets Layer-encrypted websites and streaming 

encrypted data from IoT devices with limited computing power. 

https://www.techtarget.com/searchcio/definition/e-business
https://www.techtarget.com/searchsecurity/definition/Secure-Sockets-Layer-SSL
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 4.3 Example of ECC 

• Suppose Alice wants to send to Bob an encrypted message.  

 Both agree on a base point, B. 

  Alice and Bob create public/private keys. 

• Alice 

 Private Key = a  

      Public Key = PA = a * B 

• Bob 

   Private Key = b 

        Public Key = PB = b * B 

• Alice takes plaintext message, M, and encodes it onto a point, PM, from the elliptic group 

• Alice chooses another random integer, k from the interval [1, p-1] 

• The ciphertext is a pair of points 

  PC = [ (kB), (PM + k PB ) ] 

• To decrypt, Bob computes the product of the first point from PC and his private key, b 

   b * (kB) 

• Bob then takes this product and subtracts it from the second point from PC 

       (PM + k PB ) – [b(kB)] = PM + k(bB) – b(kB) = PM 

• Bob then decodes PM to get the message, M. 
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5. ELLIPTIC CURVE DISCRETE LOGARITHM 

PROBLEM 

 

5.1 Introduction to ECDLP 

The elliptic curve discrete logarithm problem, which is abbreviated ECDLP, asks for a 

solution m to the equation [m]P = Q for given points P,Q ∈  E(Fq). If q is small, we can 

compute P, [2]P, [3]P,... until we find Q, but for large values of q it is quite difficult to find 

m. This has led people to create public key cryptosystems based on the difficulty of solving 

the ECDLP. Despite extensive research since the mid-1980s, the fastest known algorithms to 

solve the ECDLP on general curves are collision algorithms taking O( √q ) steps. Thus the 

best known algorithms to solve the ECDLP in E(Fq) take exponential time, i.e., the running 

time is exponential in log q. This fact is the primary attraction for using elliptic curves in 

cryptography. 

Let G be group, and let x,y ∈  G be elements such that y is in the subgroup generated by x. 

The discrete logarithm problem (DLP) is the problem of determining an integer m ≥ 1 such 

that xm = y. The primary advantage of using elliptic curves is that at present, it is much harder 

to solve the ECDLP in E(Fq) than it is to solve the DLP in Fq
* . This means that elliptic curve 

cryptography has key and message sizes that are 5 to 10 times smaller than those for other 

systems. 

 

5.2 Solving ECDLP 

5.2.1 Exhaustive Search Method 

Compute [m1]P, [m2]P, [m3]P.... for randomly chosen values m1, m2, m3 … until you get 

[m]P= Q. Since the field is Fq, and #E(Fq) = O(q). Hence the expected computational time is 

O(q). If P is of order n, then the running time will be n at the worst case and n/2 in average. 

Therefore, exhaustive search can be find out a way by selecting elliptic curve parameters with 

n sufficiently large to represent an infeasible amount of computation (e.g., n ≥ 280). 
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5.2.2 Collision Search Method 

Algorithms of the type collision algorithms, because they depend on the fact that it is easier 

to find collisions (elements that are common to two subsets) than it is to find specific 

elements in a set. This phenomenon is also known as the birthday paradox.  

Compute two lists for randomly chosen values m1, m2, m3, . . .  

List 1: [m1]P, [m2]P, [m3]P..... 

List 2: Q − [m1]P , Q − [m2]P, Q − [m3]P . . . until finding a collision [mi ]P = Q − [mj]P. 

Expecting running time is O(√q) by birthday paradox. 

5.2.3 Pollard’s ρ Method 

An alternative collision algorithm, due to Pollard, takes approximately the same number of 

steps and reduces the storage to essentially nothing. Pollard’s algorithm and its variants, 

which are the most practical methods currently known for solving the ECDLP. The collision 

method has running time O( √q ), but it takes about O( √q ) space to store the two lists. 

Pollards ρ method for discrete logs achieves the same O( √q ) running time while only 

requiring a very small amount of storage. 

The idea is to traverse a “random” path through the multiples mP + nQ until finding a 

collision. This path will consist of a loop with a tail attached (just like the letter ρ!!). 

That is, Pollard’s rho algorithm is to find distinct pairs  and of integers 

modulo n such that 

  .  

Then  

and so  

 Hence l = logPQ can be obtained by computing 
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A natural method to find those pairings   and is just randomly select c, d  

from [0, n-1] and store the triples (c,d, cP + dQ) in a table sorted by third component until a 

point cP + dQ is obtained for a second time. By the birthday paradox, the expected number of 

iterations before a collision is obtained is approximately  The drawback 

of this algorithm is the storage required for the  triples. 

Pollard’s rho algorithm finds    and  in roughly the same expected time as the 

natural method, but has nearly zero storage requirements. The idea is to define an iterating 

function f : P→P so that given X ∈  P and c, d ∈  [0,n − 1] with X = cP + dQ, it is easy to 

compute X* = f (X) and c*, d* ∈  [0,n−1] with X* = c*P + d*Q .Furthermore, f should have the 

characteristics of a random function. 

Theorem 5.1 

Let S be a finite set containing N elements, and let f : S → S be a function. Starting with an 

initial value x0 ∈  S, define a sequence of points x0, x1, x2 ,... by 

 

Let T be the tail length and let L be the loop length of the orbit x0, x1, x2 ,... of x, as illustrated 

in the figure below. 

Formally, T = largest integer such that xT-1 appears only once in the sequence (xi ) i≥0,  

     L = smallest integer such that xT+L = xT 
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(a) There exist an index 1≤ i < T+L such that x2i = xi. 

(b) If f : S → S and its iterates are “sufficiently random” at mixing the elements of S, then 

the expected value of T + L is   

Remark: The path in the figure shows why the algorithm is called ρ algorithm. 

Algorithm (Pollard’s rho algorithm for the ECDLP (single processor)) 

INPUT: P ∈  E(Fq ) of prime order n, Q ∈  < P >.  

OUTPUT: The discrete logarithm l = logP Q.  

1. Select the number L of branches (e.g., L = 16 or L = 32).  

2. Select a partition function H : < P >→{1,2,..., L}. 

 3. For j from 1 to L do  

3.1 Select aj ,bj ∈ R [0, n −1]. 

 3.2 Compute Rj = ajP + bjQ.  

4. Select  ∈ R [0,n −1] and compute  

5. Set  

6. Repeat the following: 

 6.1 Compute   

       Set   

 6.2 For i from 1 to 2 do  

Compute   

Set   

Until  

7. If  then return(“failure”);  

    Else compute  and return(l) 
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Example: (Pollard’s rho algorithm for solving the ECDLP)  

Consider the elliptic curve defined over F229 by the equation: 

 

The point P = (5,116) ∈  E(F229) has prime order n = 239. Let Q = (155,166) ∈  < P >. We 

wish to determine l = logP Q. 

We select the partition function H : < P >→{1,2,3,4} with L = 4 branches:  

H(x, y) = (x mod 4)+1, 

 and the four triples  [a1 ,b1 ,R1 ]=[79,163, (135,117)]  

 [a2 ,b2 ,R2]=[206,19, (96,97)]  

 [a3 ,b3 ,R3 =[87,109, (84,62)] 

 [a4 ,b4 ,R4]=[219,68, (72,134)] 

The following table lists the triples and  computed in Algorithm 

above for the case  = (54,175) in step 4.  

 

The algorithm finds 194P + 24Q = 213P + 104Q, and hence 

 l = (194-213).(104-24)-1 mod 239 = 176. 

 



36 

 

5.2.4 Parallelized Pollard’s ρ Method 

Suppose now that M distinct starting points are available for solving an ECDLP instance. A 

better approach would be running Pollard’s rho algorithm parallely on each processor (with 

different randomly chosen starting points W0) until any one processor terminates. The 

analysis shows that the expected number of elliptic curve operations performed by each 

processor before one terminates is about . Thus the expected speedup is only by a 

factor of √M.  

Van Oorschot and Wiener proposed a variant of Pollard’s rho algorithm that yields a factor M 

speedup when M processors are employed. The idea is to allow the sequences {W0
i  }i≥0 

generated by the processors to collide with one another. More precisely, each processor 

randomly selects its own starting point W0, but all processors use the same iterating function f 

to compute subsequent points W0
i. Thus, if the sequences from two different processors ever 

collide, then, as illustrated in figure , the two sequences will be identical from that point on. 

 

Let θ be the proportion of points in < P > having distinguishing property (a point may be 

distinguished if the leading t bits of its x-coordinate are zero.). Whenever a processor 

encounters a distinguished point, it transmits the point to a central server which stores it in a 

sorted list. When the server receives the same distinguished point for the second time, it 

computes the desired discrete logarithm by above methods and terminate all processor. 

The expected number of steps per processor before a collision occurs is  

subsequent distinguished point is expected after 1/θ steps. Hence the expected number of 

elliptic curve operations performed by each processor before a collision of distinguished 

points is observed is 
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and this parallelized version of Pollard’s rho algorithm achieves a speedup that is linear in the 

number of processors employed. 

Algorithm 

INPUT: P ∈  E(Fq ) of prime order n, Q ∈  < P >.  

OUTPUT: The discrete logarithm l = logP Q.  

1. Select the number L of branches (e.g., L = 16 or L = 32).  

2. Select a partition function H : < P >→{1,2,..., L}. 

3. Select a distinguishing property for points in < P >.  

4. For j from 1 to L do  

4.1 Select aj ,bj ∈ R [0, n −1]. 

4.2 Compute Rj = ajP + bjQ. 

5. Each of the M processors does the following:  

5.1 Select c,d ∈ R [0, n −1] and compute X = cP +dQ.  

5.2 Repeat the following:  

If X is distinguished then send (c,d, X) to the central server.  

Compute j = H(X). 

Set X ← X + Rj, c ← c + aj mod n, and d ← d + bj mod n.  

Until the server receives some distinguished point Y for the second time.  

6. Let the two triples associated with Y be  and   

7. If  then return(“failure”);  

    Else compute and return(l). 
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6.OTHER APPLICATIONS OF ELLIPTIC CURVE 

6.1 Factorizing using Elliptic Curve 

In mid 1980s it is found that elliptic curves are very effective for factoring numbers of around 

60 decimal digits, and, for larger numbers, finding prime factors having around 20 to 30 

decimal digits. 

For example, We want to factor 4453. Let E be the elliptic curve y2 = x3 + 10x − 2 mod 4453 

and let P = (1, 3). 

We try to find 3P. First we compute 2P. The slope of line tangent at P is given by, 

 

We know that the gcd(6, 4453) = 1. So we can find that 6-1 ≡ 3711 (mod 4453). 

Using this we find the 2P = (x,y) as 

x ≡ 37132 − 2 ≡ 4332,  y ≡ −3713(x − 1) − 3 ≡ 3230 

To compute 3P, 3P = P+2P. Thus the slope is,  

 

But gcd(4331, 4453) = 61  ≠1. Therefore, we cannot find 4331−1 (mod 4453), and we cannot 

evaluate the slope. However, we have found the factor 61 of 4453, and therefore  

4453 = 61*73 

Also we know that  

If we look at the multiples of P mod 61 , 

we have P ≡ (1, 3), 2P ≡ (1, 58), 3P ≡ ∞, 4P ≡ (1, 3), ... (mod 61).  

However, the multiples of P mod 73 are 

 P ≡ (1, 3), 2P ≡ (25, 18), 3P ≡ (28, 44), ..., 64P ≡ ∞ (mod 73). 



39 

 

Therefore, when we computed 3P mod 4453, we obtained ∞ mod 61 and a finite point mod 

73.This is why the slope had a 61 in the denominator and was therefore infinite mod 61. If the 

order of P mod 73 had been 3 instead of 64, the slope would have had 0 mod 4453 in its 

denominator and the gcd would have been 4453, which would have meant that we did not 

obtain the factorization of 4453. But the probability is low that the order of a point mod 61 is 

exactly the same as the order of a point mod 73, so this situation will usually not cause us 

much trouble. If we replace 4453 with a much larger composite number n and work with an 

elliptic curve mod n and a point P on E, then the main problem we’ll face is finding some 

integer k such that kP = ∞ mod one of the factors of n. In fact, we’ll often not obtain such an 

integer k. But if we work with enough curves E, it is likely that at least one of them will allow 

us to find such a k. This is the key property of the elliptic curve factorization method. 

 

Here is the elliptic curve factorization method. We start with a composite integer n (assume 

n is odd) that we want to factor and do the following. 

1. Choose several (usually around 10 to 20) random elliptic curves Ei : y2 = x3 + Aix + Bi and 

points Pi mod n. 

2. Choose an integer B (perhaps around 108) and compute (B!) Pi on Ei for each i. 

3. If step 2 fails because some slope does not exist mod n, then we have found a factor of n. 

4. If step 2 succeeds, increase B or choose new random curves Ei and points Pi and start over. 

Steps 2, 3, 4 can often be done in parallel using all of the curves Ei simultaneously. 

 

The elliptic curve method is very successful in finding a prime factor p of n when p < 1040. 

Suppose we have a random integer n of around 100 decimal digits, and we know it is 

composite (perhaps, for example, 2n-1 ≢ 1 (mod n), so Fermat’s little theorem implies that n 

is not prime). If we cannot find a small prime factor (by testing all of the primes up to 107, for 

example), then the elliptic curve method is worth trying since there is a good chance that n 

will have a prime factor less than 1040. 

 

 



40 

 

6.2 Primality Testing 

We know the Pocklington-Lehmer primality test. 

Proposition 6.1 

Let n > 1 be an integer, and let n − 1 = rs with r ≥ √n. Suppose that, for each prim e |r ,there 

exists an integer a with, 

   

 Then n is prime. 

Converese of this proposition is also true. 

Proof: Let p be a prime factor of n and let le be the highest power of l dividing r. Let 

 

Then  

 Since   It follows that the order of b (mod p) is le . Therefore,    le 

|p − 1. Since this is true for every prime power factor le of r, we have r|p − 1. In particular, p 

> r ≥ √n. If n is composite, it must have a prime factor at most √n. We have shown this is not 

the case, so n is prime. 

Theorem 6.2 

Let n > 1 and let E be an elliptic curve mod n. Suppose there exist distinct prime numbers 

l1,l2,..,lk  and finite points Pi ∈  E(Zn) such that, 

 

Then n is prime. 

Proof: Let p be a prime factor of n. Write n = pfn1 with p ∤  n1 .Then, 
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Since pi is a finite point in E(Zn), it yields a finite point in E(Zpf  ), namely Pi mod pf . We can 

further reduce and obtain a finite point Pi,p = Pi mod p in E(Fp). Since li Pi  = ∞ mod n, we 

have li Pi = ∞ mod every factor of n. In particular,  li Pi,p = ∞ in E(Fp), which means that Pi,p 

has order li. It follows that  

li | # E(Fp) for all i, so # E(Fp) is divisible by  Therefore, 

 

so p > √n. Since all prime factors of n are greater than √n, it follows that n is prime. 

Example: Let n = 907. Let E be the elliptic curve y2 = x3 + 10x−2 mod n. Let  l = 71. Then, 

 

Let P = (819, 784). Then 71P = ∞. The above theorem implies that 907 is prime. 
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CONCLUSION 

 

An elliptic curve is a curve that’s also naturally a group. The group law is constructed 

geometrically. An elliptic curve is not an ellipse in the sense of a projective conic. Ellipse has 

genus zero. Elliptic curves are especially important in number theory, and constitute a major 

area of current research; for example, they were used in Andrew Wiles's proof of Fermat's 

Last Theorem. They also find applications in elliptic curve cryptography (ECC) and integer 

factorization. 

Elliptic curves over finite fields are notably applied in cryptography and for the factorization 

of large integers. It can be shown that elliptic curves defined over the complex numbers 

correspond to embeddings of the torus into the complex projective plane. The torus is also an 

abelian group, and this correspondence is also a group isomorphism. Note that the 

uniformization theorem implies that every compact Riemann surface of genus one can be 

represented as a torus. This also allows an easy understanding of the torsion points on an 

elliptic curve.  

ECC is an approach to public-key cryptography based on the algebraic structure of elliptic 

curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based 

on plain Galois fields) to provide equivalent security. It delivers a relatively more secure 

foundation than the first generation public key cryptography systems for example RSA. 
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