21001251

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

Fourth Semester

Faculty of Science

Branch I – (A)–Mathematics

MT 04 E14—CODING THEORY

(2012–2018 Admissions—Supplementary/Mercy Chance)

Time : Three Hours

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Find the dual code C^{\perp} for the code $C = \langle S \rangle$, where $S = \{0100, 0101\}$.
- 2. The generating matrix $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$ for a code is given. Encode (i) u = 100; (ii) v = 010.
- 3. Show that if C is a self-dual code with generator matrix (I | A) then C also has (-A' | I) as generator matrix.
- 4. Define a perfect code. Give an example of a perfect code.
- 5. Show that the order of a subgroup H of G divides the order of G.
- 6. What is an irreducible polynomial. Test whether $f(x) = 1 + x + y^4$ is irreducible over $k = \{0, 1\}$.
- 7. Prove that the integers are a PIR.
- 8. Define Vandermonde determinants.

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Show that if *d* is the minimum weight of a code C, then C can correct $t = \lfloor (d-1)/2 \rfloor$ or fewer errors and conversely.
- 10. Show that a self-dual $\left[n, \frac{n}{2}\right]$ ternary code exists iff *n* is divisible by 4.

Maximum Weight: 30

Reg. No.....

Name.....

 $(5 \times 1 = 5)$

Turn over

- 11. Show that if an [n,k] code C has a generator matrix G = (I, A) in standard form, then a parity check matrix of C is $H = (-A^T, I)$, where A^T is the transpose of A and I is the $(n-k) \times (n-k)$ identity matrix.
- 12. Suppose $GF(2^3)$ was constructed using $1 + x + x^3$. Suppose that $1 + x + x^3 + x^6$ is received. Find the code word send through the cyclic Hamming code of length 7.
- 13. Prove that if p is prime, then the integer mod p, GF(p) constitute a field. Also prove that every finite field F contains a subfield that is GF(p) upto relabelling for some prime p and $p.\alpha = 0$ for every $\alpha \in F$.
- 14. Show that $x^2 2$ is irreducible over GF (5).
- 15. Prove that the binary cyclic code with generator polynomial 1 + x is the (n 1) dimensional code C consisting of all even weight vectors of length n.
- 16. Prove that the value of the Vandermonde determinant D is $\prod_{j=1}^{n-1} \prod_{i=j+1}^{n} (\alpha_i \alpha_j)$.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. (a) Prove that the covering radius has the following properties :
 - (i) r is the weight of the coset of largest weight.
 - (ii) r is the smallest among the number s so that every syndrome is a combination of s or fewer columns of any parity check matrix.

(b) Prove that if
$$\subset$$
 is an $[n,k,d]$ code over GF (q) , then $\binom{n}{0} + (q-1)\binom{n}{1} + \ldots + (q-1)^t \binom{n}{t} q^k \sum q^n$.

18. (a) Find a generator matrix for the linear code generated by :

(b) If d is even show that A(n-1,d-1) = A(n,d).

19. Define Golay code. Decode each of the following received words using Golay codes :

(a) 111 000 000 000. (b) 011 011 011011.

20. (a) Using the double error correcting BCH code, decode the received vectors :

x = (1,1,0,1,1,1,1,0,1,0,1,1,0,0,1), given the parity check matrix :

	1000	1000]
	0100	0001
	0010	0011
	0001	0101
	1100	1111
H =	0110	1000
	0011	0001
	1101	0011
	1010	0101
	0101	1111
	1110	1000
	0111	0001
	1111	0011
	1011	0101
	1001	1111

- (b) Messages are encoded using the above code. Determine if possible the locations of the errors is *w* is received and the syndrome WH is 0100 0101.
- 21. (a) Let C_1 and C_2 be cyclic codes with generator polynomial $q_1(x)$ and $q_2(x)$ and idempotent generators $e_1(x)$ and $e_2(x)$. Prove that $C_1 \cap C_2$ has a generator polynomial l.c.m. $\{q_1(x), q_2(x)\}$ and has idempotent generator $e_1(x), e_2(x)$ and $c_1 + c_2$ has a generator polynomial g.c.d. $\{q_1(x), q_2(x)\}$ and has idempotent generator $e_1(x) + e_2(x) e_1(x)e_2(x)$.
 - (b) Prove that every minimal ideal μ is a field. If $\mu = \langle \hat{f}_i(x) \rangle$, show that μ can be constructed by using residues modulo the polynomial $f_i(x)$, where $f_i(x)$ satisfy $x^n 1 = (x-1)f_1f_2 \dots f_k$, the factorization of $x^n 1$ into irreducible factors. Also prove that if $f_i(x)$ has degree m, then μ is isomorphic to the field G F(2^m).

Turn over

- 22. (a) If C is an ideal in $R_n = F[x]/(x^n 1)$ and let g(x) be the monic polynomial of smallest degree in C; prove that g(x) is uniquely determined on $C = \langle g(x) \rangle$.
 - (b) Prove that of C is an ideal in \mathbb{R}_n , the unique monic generator, g(x) of C of smallest degree divides $x^n 1$ and conversely if a polynomial g(x) in C divides $x^n 1$, then g(x) has the lowest degree in $\langle g(x) \rangle$.

 $(3 \times 5 = 15)$

