

21001239

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

Fourth Semester

Faculty of Science

Branch I (A)–Mathematics

MT 04 C 16—SPECTRAL THEORY

(Programme - Core - Common for all)

[2012 to 2018 Admissions-Supplementary/Mercy Chance]

Time : Three Hours

Maximum Weight : 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Define weak convergence in a normed space. Let (x_n) be a sequence in a normed space X. Then prove that $\alpha x_n \xrightarrow{w} \alpha x$ where α is a scalar.
- 2. Let X = C[0,1] and define $T : \mathcal{D}(T) \to X$ by Tx = x', where the prime denotes differentiation and $\mathcal{D}(T)$ is the subspace of functions $x \in X$ which have a continuous derivative. Prove that T is not bounded but is closed.
- 3. Consider the Hilbert sequence space l^2 . Define a linear operator $T: l^2 \to l^2$ by $T(\xi_1, \xi_2, \ldots) = (0, \xi_1, \xi_2, \ldots)$ where $(\xi_1, \xi_2, \ldots) \in l^2$. Prove that 0 is a spectral value of T but 0 is not an eigenvalue of T.
- $\label{eq:complex} \begin{array}{l} \text{4. Let } X \text{ be a complex Banach space. Let } T \text{ be a bounded linear operator from } X \text{ to } X. \text{ Prove that } \sigma(T) \\ \text{ is compact.} \end{array}$
- 5. Let X and Y be normed spaces. Let $T: X \to Y$ be a compact linear operator. Prove that αT is compact, where α is any scalar.
- 6. Prove that a densely defined linear operator T in a complex Hilbert space H is symmetric if and only if $T \subset T^x$.

1/3

Reg. No.....

Name.....

21001239

- 7. Prove that the spectrum $\sigma(\mathbf{T})$ of a bounded self-adjoint linear operator $\mathbf{T}: \mathbf{H} \to \mathbf{H}$ on a complex Hilbert space \mathbf{H} lies in the closed interval $[m, \mathbf{M}]$ on the real axis, where $m = \inf_{\|x\|=1} \langle \mathbf{T}x, x \rangle, \mathbf{M} = \inf_{\|x\|=1} \langle \mathbf{T}x, x \rangle.$
- 8. Let P_1 and P_2 be projections of a Hilbert space H onto Y_1 and Y_2 , respectively, and $P_1 P_2 = P_2P_1$ Show that $P_1 + P_2 - P_1P_2$ is a projection of H onto $Y_1 + Y_2$.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Let (T_n) be a sequence of operators in B (X, Y), where X and Y are Banach spaces. Then prove that (T_n) is strongly operator convergent if and only if :
 - (i) The sequence $(|| T_n ||)$ is bounded.
 - (ii) The sequence $(T_n x)$ is Cauchy in Y for every x in a total subset M of X.
- 10. Let $T : \mathcal{D}(T) \to Y$ be a bounded linear operator with domain $\mathcal{D}(T) \subset X$, where X and Y are normed spaces. Prove that :
 - (i) If $\mathcal{D}(\mathbf{T})$ is a closed subset of X, then T is closed.
 - (ii) If T is closed and Y is complete, then $\mathcal{D}(T)$ is a closed subset of X.
- 11. State and prove Bounded inverse theorem.
- 12. Prove that the resolvent set $\rho(T)$ of a bounded linear operator T on a complex Banach space is open.
- 13. Let A be a complex Banach algebra with identity *e*. Let $x \in A$ and ||x|| < 1. Prove that e x is

invertible and
$$(e-x)^{-1} = e + \sum_{j=1}^{\infty} x^3$$
.

14. Let A be a complex Banach algebra with identity *e*. Then for any $x \in A$, prove that it's spectrum $\sigma(x)$ is compact.

21001239

- 15. Let $T: X \to X$ be a compact linear operator on a normed space X, and let r be the smallest integer (depending on λ) such that $\mathcal{N}(T_{\lambda}^{r}) = \mathcal{N}(T_{\lambda})^{r+1}$. Prove that $X = \mathcal{N}(T_{\lambda}^{r}) \in T_{\lambda}^{r}(X)$.
- 16. Let $P: H \to H$ be a bounded linear operator on a Hilbert space H. Prove that P is a projection if and only if P is self-adjoint and idempotent.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. State and prove open mapping theorem.
- 18. Let X be a complex Banach space and $T \in B(X, X)$. Let $r_{\sigma}(T)$ be spectral radius of T. Then prove

that $r_{\sigma}(\mathbf{T}) = \lim_{n \to \infty} \sqrt[n]{\|\mathbf{T}^n\|}.$

- 19. Let $T: X \to Y$ be a compact linear operator. Prove that its adjoint operator $T^x: Y' \to X'$ is a compact linear operator, where X and Y are normed spaces and X' and Y' are dual spaces of X and Y.
- 20. (i) Prove that the set of eigenvalues of a compact linear operator $T: X \to X$ on a normed space X is countable and the only possible point of accumulation is $\lambda = 0$.
 - (ii) Let $T: X \to X$ be a compact linear operator and $S: X \to X$ a bounded linear operator on a normed space. Then prove that ST and TS are compact.
- 21. If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive and commute then prove that their product ST is positive.
- 22. Let H be a Hilbert space. Let P_1 , P_2 be projections on H. Prove that :
 - (i) $P = P_1P_2$ is a projection H if and only if the projections P_1 and P_2 commutes. Then P projects H onto $Y = Y_1 \cap Y_2$, where $Y_i = P_i(H), i = 1, 2$.
 - (ii) Two closed subspaces Y and V of H are orthogonal if and only if the corresponding projections satisfy $P_Y P_V = 0$.
 - (iii) The sum P = P_1 + P_2 is a projection on H if and only if Y_1 = P_1 (H) and Y_2 = P_2 (H) are orthogonal.

 $(3\times 5=15)$

