

QP CODE: 22100168

Reg No	:	
Name	:	

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, JANUARY 2022

Fifth Semester

CORE COURSE - MM5CRT03 - ABSTRACT ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

74B7AFB8

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

State whether True or False:
a) "Each element of a group appear once and only once in each row and column of the group table".

b) "There is only one group of three elements , upto isomorphism".

- 2. Find the gcd of 32 and 24.
- 3. Find all orders of subgroups of the group \mathbb{Z}_{17} .
- 4. Find the number of elements in the set $\{\sigma\in S_4|\sigma(3)=3\}.$
- 5. Define the left regular representation of a group G.
- 6. Find all orbits of the permutation $\sigma:\mathbb{Z} o\mathbb{Z}$ where $\sigma(n)=n-3.$
- 7. Define the direct product of the groups G_1, G_2, \cdots, G_n .
- 8. Let G be a group. If $\phi: G \to G$ defined by $\phi(g) = g^2$ is a group homomorphism, show that G is Abelian.
- 9. Show that every group of order 101 is simple.
- 10. Prove that $\phi_a: F \to R$ by $\phi_a(f) = f(a)$ for $f \in F$, F is the ring of all function mapping R into R is a ring homomorphsim.

Page 1/3

11. Solve the equation 3x = 2 in the field Z and in the field Z ₂₃.

12. Define a) Kernel of a ring homomorphismb) Ideal of a ring

(10×2=20)

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. Determine whether * defined on \mathbb{Q} by a * b = ab/2 is a) commutative b) associative.
- 14. Show that the subset S of M_n (R) consisting of all invertible $n \times n$ matrices under matrix multiplication is a group. Also check whether it is an abelian group.
- 15. Let G be the multiplicative group of all invertible $n \times n$ matrices with entries in \mathbb{C} and let T be the subset of G consisting of those matrices with determinant 1. Then prove that T is a subgroup of G.
- 16. Prove that for $n \ge 2$, the number of even permutations in S_n is the same as the number of odd permutations. Define the alternating group A_n on n letters.
- 17. Prove that every group of prime order is cyclic.
- 18. Let G be a group and order of G is a prime number. Show that any group homomorphism $\phi:G\to G^l$ is either trivial or one to one
- 19. Let **G** be a group, show that Z(G) the set of all elements in **G** which commutes with every element of **G**, is a normal subgroup of **G**.
- 20. Let p be a prime . Show that in a ring Zp , $(a + b)^p = a^p + b^p$ for all $a, b \in Z_p$
- 21. Show that $\phi: C \to M_2(R)$ given by $\phi(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ for $a, b \in R$ gives an isomorphism of C with the subring $\phi[c]$ of M₂(R)

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

22. Define isomorphism between two binary structures. Check whether $\langle \mathbb{Z}, + \rangle$ is isomorphic to $\langle 2\mathbb{Z}, + \rangle$ where + is the usual addition.

- 23. 1. Let H be a subgroup of a group G. Let the relation \sim_L be defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$. Then show that \sim_L is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
 - 2. Let H be a subgroup of a group G. Then define the left and right cosets of H containing $a \in G$.
 - 3. Exhibit the left cosets and the right cosets of the subgroup $3\mathbb{Z}$ of \mathbb{Z} .
- 24. State and prove fundamental homomorphism theorem.
- 25. a) Prove that every field F is an integral domain.
 - b) Prove that every finite integral domain is a field.
 - c) Prove that Zp is a field if p is a prime.

(2×15=30)