B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, JANUARY 2022

Fifth Semester

CORE COURSE - MM5CRT03 - ABSTRACT ALGEBRA

Common for B.Sc Mathematics Model I \& B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

74B7AFB8
Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. State whether True or False:
a) "Each element of a group appear once and only once in each row and column of the group table".
b) "There is only one group of three elements, upto isomorphism".
2. Find the gcd of 32 and 24 .
3. Find all orders of subgroups of the group \mathbb{Z}_{17}.
4. Find the number of elements in the set $\left\{\sigma \in S_{4} \mid \sigma(3)=3\right\}$.
5. Define the left regular representation of a group G.
6. Find all orbits of the permutation $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ where $\sigma(n)=n-3$.
7. Define the direct product of the groups $G_{1}, G_{2}, \cdots, G_{n}$.
8. Let G be a group. If $\phi: G \rightarrow G$ defined by $\phi(g)=g^{2}$ is a group homomorphism, show that G is Abelian.
9. Show that every group of order 101 is simple.
10. Prove that $\phi_{a}: F \rightarrow R$ by $\phi_{a}(f)=f(a)$ for $f \in F, \mathrm{~F}$ is the ring of all function mapping R into R is a ring homomorphsim.
11. Solve the equation $3 x=2$ in the field Z and in the field $Z{ }_{23}$.
12. Define a) Kernel of a ring homomorphism
b) Ideal of a ring
$(10 \times 2=20)$

Part B

Answer any six questions.
Each question carries 5 marks.
13. Determine whether $*$ defined on \mathbb{Q} by $a * b=a b / 2$ is a) commutative b) associative.
14. Show that the subset S of $M_{n}(R)$ consisting of all invertible $n \times n$ matrices under matrix multiplication is a group.
Also check whether it is an abelian group.
15. Let G be the multiplicative group of all invertible $n \times n$ matrices with entries in \mathbb{C} and let T be the subset of G consisting of those matrices with determinant 1. Then prove that T is a subgroup of G.
16. Prove that for $n \geq 2$, the number of even permutations in S_{n} is the same as the number of odd permutations. Define the alternating group A_{n} on n letters.
17. Prove that every group of prime order is cyclic.
18. Let G be a group and order of G is a prime number. Show that any group homomorphism $\phi: G \rightarrow G^{l}$ is either trivial or one to one
19. Let \mathbf{G} be a group, show that $Z(G)$ the set of all elements in \mathbf{G} which commutes with every element of \mathbf{G}, is a normal subgroup of \mathbf{G}.
20. Let p be a prime. Show that in a ring $\mathrm{Zp}, \quad(\mathrm{a}+\mathrm{b})^{\mathrm{p}}=\mathrm{a}^{\mathrm{p}}+\mathrm{b}^{\mathrm{p}}$ for all $a, b \in Z_{p}$
21. Show that $\phi: C \rightarrow M_{2}(R)$ given by $\phi(a+b i)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ for $a, b \in R$ gives an isomorphism of C with the subring $\phi[c]$ of $M_{2}(R)$

Part C

Answer any two questions.
Each question carries 15 marks.
22. Define isomorphism between two binary structures. Check whether $\langle\mathbb{Z},+\rangle$ is isomorphic to $\langle 2 \mathbb{Z},+\rangle$ where + is the usual addition.
23. 1. Let H be a subgroup of a group G. Let the relation \sim_{L} be defined on G by $a \sim_{L} b$ if and only if $a^{-1} b \in H$. Then show that \sim_{L} is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
2. Let H be a subgroup of a group G. Then define the left and right cosets of H containing $a \in G$.
3. Exhibit the left cosets and the right cosets of the subgroup $3 \mathbb{Z}$ of \mathbb{Z}.
24. State and prove fundamental homomorphism theorem.
25. a) Prove that every field F is an integral domain.
b) Prove that every finite integral domain is a field.
c) Prove that $Z p$ is a field if p is a prime.
($2 \times 15=30$)

