

QP CODE: 22000354

Reg No : Name :

MSc DEGREE (CSS) EXAMINATION , JANUARY 2022

Second Semester

CORE - ME010205 - MEASURE AND INTEGRATION

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 Admission Onwards

81B3C335

Time: 3 Hours

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. Define measurability of a set. Prove that the translate of a measurable set is measurable.
- 2. State and prove the excision property of Lebesgue measurable sets.
- 3.

- 1. When will you say a property holds almost everychere on a measurable set E?
- 2. Let $\{E_k\}_{k=1}^{\infty}$ is a countable collection of Lebesgue measurable sets for which $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then prove that almost all $x \in \mathbb{R}$ belong to at most finitely many of the E_k 's.
- 4. Let f and g are Lebesgue measurable function on E. Prove that the sum f + g is Lebesgue measurable on E.
- 5. Prove that bounded Lebesgue measurable functions on a set of finite measure E, are Lebesgue integrable over E.
- 6. Prove that for a non negative Lebesgue measurable function f on E, $\int_E f = 0$ if and only if f = 0 a.e. on E.
- 7. Define a null set with respect to a signed measure. Prove that a set of measure zero with respect to a signed measure need not be a null set.
- 8. Let (X, \mathcal{M}) be a measurable space where $\mathcal{M} = \{X, \phi\}$. Which all are the functions that are measurable with respect to \mathcal{M} ? Justify?
- 9. Let (X, \mathcal{M}, μ) be a measure space and f a nonnegative measurable function on X. Then prove that there is an increasing seguence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and $\lim_{n \to \infty} \int_X \psi_n \ d\mu = \int_X f \ d\mu$

Weightage: 30

10. Define measurable rectangle, semiring and premeasure.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. Let I be a non-empty interval, prove that $m^*(I) = l(I)$, the length of I.
- 12. Is the image of a measurable set under a continuous function measurable? Justify your answer.
- 13. State and Simple Approximation Theorem
- 14. Prove that Lebesgue integration of simple functions defined on a set of finite measure E satisfies the properties of Linearity and Monotonicity
- 15. Let f be a nonnegative Lebesgue measurable function on R. For each Lebesgue measurable subset E of R, define $\mu(E) = \int_E f$, the Lebesgue integral of f over E. Show that μ is a measure on the σ algebra of Lebesgue measurable subsets of R.
- 16. If $E = \bigcup_{k=1}^{\infty} E_k$ where each E_k is measurable, prove that E is also measurable.
- 17. Let (X, \mathcal{M}, μ) be a measure space and the function f be integrable over X. Then prove the following statements.
 - 1. If $\{X_n\}_{n=1}^{\infty}$ is an ascending countable collection of measurable subsets of X whose union is X, then $\int_X f \, d\mu = \lim_{n \to \infty} \int_{X_n} f \, d\mu$ 2. If $\{X_n\}_{n=1}^{\infty}$ is a descending countable collection of measurable subsets of X, then $\int_{n=1}^{\infty} f \, d\mu = \lim_{n \to \infty} \int_{X_n} f \, d\mu$
- 18. Let (X, \mathcal{M}, μ) be a measure space and the function f be integrable over X. Then prove that for each $\epsilon > 0$, there is a $\delta > 0$ such that for any measurable subset E of X, $\mu(E) < \delta$ implies $\int_{\Sigma} |f| d\mu < \epsilon$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

19.

- 1. Let E be a bounded measurable set of real numbers. Suppose there is a bounded, countably infinite set Λ of real numbers for which the collection of translates of $\{\lambda + E\}_{\lambda \in \Lambda}$ is disjoint. Then prove that m(E) = 0.
- 2. Prove that there exists a non-measurable set of real numbers.
- 20. State and prove the properties of Linearity, Monotonicity and Additivity over domains of integration for Lebesgue integration of integrable functions on E

- 21. (i) State and prove the Jordan decomposition Theorem.
 - (ii) Prove that the Jordan decomposition of a signed measure is unique.
- 22. (a) State Radon Nikodym Theorem
 - (b) State and prove Lebesgue Decomposition theorem

(2×5=10 weightage)