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Part A

Answer any ten questions.

Each question carries 2 marks.
 

1.  Show that two tangents can be drawn from any point to an ellipse.

2.  What is the director circle of an ellipse and a hyperbola? Write its standard equation.

3.  Derive the equation of chord of contact of the parabola y2 = 4ax.

4.  If P and D are the extremities of semi-conjugate diameters of the ellipse ,

show that the locus of the middle point PD is .

5.  Find the polar equation of the conic having the axis of the conic makes an angle   with
the initial line.

6.  Find the equation for a line in polar coordinates when the line does not pass through the
pole.

7.  Prove that sin 3x = 3 sin x - 4 sin3 x.

8.  Prove that sinh(-x) = - sinh x

9.  Factorize x6 + 2 x3 cos 120o + 1

10.  Find the nth derivative of sinxsin2xsin3x.

11.  Using Leibnitz's theorem find the nth derivative of e3xsin5x.

12.  Evaluate .
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Part B

Answer any six questions.

Each question carries 5 marks.
 

13.  Show that the locus of the mid-points of chords of a parabola which subtend a right angle
at the vertex is another parabola of half the latus rectum of the original parabola.

14.  Find the locus of the poles of chords of a parabola subtending a right angle at the vertex.

15.  Show that the conjugate lines through a focus of an ellipse are at right angles.

16.  Prove that the tangents at the ends of a pair of conjugate diameters of the ellipse 

 form a parallelogram of constant area.

17.  Find the equation of the tangent at  to the conic 

18.  If A + iB = c tan(x + iy), then prove that  

19.  Sum the series  

20.  Find the nth derivative of  and hence find the nth derivative of .

21.  Find the limit of , as .

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.
 

22.  Find th econdition that teh line lx + my + n = 0 is a tangent to a) the parabola y2 = 4ax b)

the ellipse  c) the hyperbola .

23.  Transform to polar coordinates: 
(a)                 (b)            (c) .

24.  Sum the series  
(i)  
(ii) 

25.  (a) If , prove that . 

(b) If , prove that . 

(c) If , prove that .
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