QP CODE: 21103215

Reg No	:	
Name	:	

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, DECEMBER 2021

Second Semester

Core Course - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science)

2017 ADMISSION ONWARDS

56B57354

Time: 3 Hours

Max. Marks : 80

Part A

Answer any **ten** questions.

Each question carries 2 marks.

- 1. Show that two tangents can be drawn from any point to an ellipse.
- 2. What is the director circle of an ellipse and a hyperbola? Write its standard equation.
- 3. Derive the equation of chord of contact of the parabola $y^2 = 4ax$.
- 4. If P and D are the extremities of semi-conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that the locus of the middle point PD is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$.
- 5. Find the polar equation of the conic having the axis of the conic makes an angle α with the initial line.
- 6. Find the equation for a line in polar coordinates when the line does not pass through the pole.
- 7. Prove that $\sin 3x = 3 \sin x 4 \sin^3 x$.
- 8. Prove that $\sinh(-x) = -\sinh x$
- 9. Factorize $x^6 + 2 x^3 \cos 120^\circ + 1$
- 10. Find the nth derivative of sinxsin2xsin3x.
- ^{11.} Using Leibnitz's theorem find the n^{th} derivative of $e^{3x}sin5x$.
- 12. Evaluate $lim_{x \to 0}(sinx)^{tanx}$.

(10×2=20)

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Show that the locus of the mid-points of chords of a parabola which subtend a right angle at the vertex is another parabola of half the latus rectum of the original parabola.
- 14. Find the locus of the poles of chords of a parabola subtending a right angle at the vertex.
- 15. Show that the conjugate lines through a focus of an ellipse are at right angles.
- 16. Prove that the tangents at the ends of a pair of conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ form a parallelogram of constant area.
- 17. Find the equation of the tangent at α to the conic $rac{l}{r} = 1 + e \cos{(heta \gamma)}$.
- 18. If A + iB = c tan(x + iy), then prove that $tan2x = \frac{2cA}{c^2 A^2 B^2}$
- 19. Sum the series $sinh\alpha \frac{1}{2}sinh2\alpha + \frac{1}{3}sinh3\alpha \ldots$
- 20. Find the nth derivative of $(ax + b)^m$ and hence find the nth derivative of $\frac{1}{ax+b}$.
- 21. Find the limit of $rac{1+sinx-cosx+log(1-x)}{xtan^2x}$, as x
 ightarrow 0.

(6×5=30)

Part C

Answer any two questions.

Each question carries **15** marks.

- 22. Find th econdition that teh line lx + my + n = 0 is a tangent to a) the parabola y^2 = 4ax b) the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ c) the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 23. Transform to polar coordinates: (a) (5,4) (b) $(9,\frac{5}{2})$ (c) (6,-1).
- 24. Sum the series (i) $ccos\alpha - \frac{1}{3}c^3cos(\alpha + 2\beta) + \frac{1}{5}c^5cos(\alpha + 4\beta) - \dots$ (ii) $sin\alpha sin\beta + \frac{1}{2}sin2\alpha sin2\beta + \frac{1}{3}sin3\alpha sin3\beta + \dots$
- 25. (a) If $y = (tan^{-1}x)^2$, prove that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$. (b) If x = sint, y = sinpt, prove that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0$. (c) If $y = e^{-x}cosx$, prove that $y_4 + 4y = 0$.

(2×15=30)

