

QP CODE: 21101243 Reg No :

Name :

B.Sc DEGREE (CBCS) EXAMINATION, APRIL 2021 Sixth Semester

Choice Based Core Course - MM6CBT03 - NUMERICAL ANALYSIS

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

F868D8D4

Time: 3 Hours Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Give the graphical representation of regula-falsi method.
- 2. State iteration method to find the root of an equation f(x) = 0.
- 3. Give graphical representation of Newton-Raphson method.
- 4. What is generalized Newton's formula?
- 5. What are called third forward differences?
- 6. How are forward fifference and backward difference operators related?
- 7. Prove that $E \equiv e^{hD}$.
- 8. Define Power density Spectrum of the Periodic spectrum of the periodic signal
- 9. Define Inverse Discrete Fourier Transform IDFT
- 10. Define Truncation and Rounding error in numerical Differentiation
- 11. Write General formula for Numerical Integration using Newtons forward difference formula.
- 12. Evaluate the integral $\int_0^{0.4} y dx$ from the following data using Boole's rule for numerical integration

Х	0	0.1	0.2	0.3	0.4
0	0.37	0.68	0.93	1.12	1.25

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Using bisection method find a real root of the equation $f(x) = x^3 x 1 = 0$.
- 14. Explain Aitken's Δ^2 -process.
- 15. Write a shortnote on errors in polynomial interpolation.

16. Prove that a)
$$\mu=rac{E^{1/2}+E^{-1/2}}{2}$$
 b) $\mu=\sqrt{1+rac{\delta^2}{4}}.$

17. The table below gives the values of tan x for $0.10 \le x \le 0.30$. Find tan 0.50.

х	0.10	0.15	0.20	0.25	0.30
У	0.1003	0.1511	0.2027	0.2553	0.3093

- 18. Derive the exponential form of the periodic function f(t) with period T > 0
- 19. The distance $(x \ cm)$ traversed by a particle at different times $(t \ seconds)$ are given below.

t	0	0.1	0.2	0.3	0.4	0.5	0.6
x	3.01	3.16	3.29	3.36	3.40	3.38	3.32

Find the velocity of the particle at t = 0.3 seconds.

20. a) Write a shortnote on trapezoidal rule with step size h to evaluate the integral $I=\int_{x_0}^{x_n}ydx$.

Given vaules of x, y(x) as follows:

Х	0	0.5	1	1.5	2
y(x)	0.399	0.352	0.242	0.129	0.054

Find an approximate value of $\int_0^2 y(x) dx$.

21. Evaluate $\int_0^1 sinx^2 dx$ by Simpsons 1/3 rule correct to four decimal places, taking 10 sub intervals.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. (i) Explain Ramanujan's method to find a smallest root of the equation f(x) = 0.
 - (ii) Find the smallest root of the equation $f(x)=x^3-6x^2+11x-6=0$ using Ramanujan's method.
- 23. a) Write a short note on Newton's forward difference formula.
 - b) Using Newton's forwad difference formula, find the sum

$$S_n = 1^3 + 2^3 + 3^3 + \ldots + n^3$$
.

- 24. Find the Fourier transforms of
 - i) f(x)=1 if $\left|x\right|$ < 1 and f(x)=0 otherwise
 - ii) $f(x)=e^{-ax}$ if x>0 and f(x)=0 if x<0 ; where a > 0.
- 25. Derive Simpsons 3/8 rule. Using this rule evaluate $\int_0^1 \frac{1}{1+x} dx$ with $h = \frac{1}{6}$. Compare the results with exact values.

 $(2 \times 15 = 30)$