| Reg No | : |  |
|--------|---|--|
| Name   | : |  |

## QP CODE: 21101240

Time: 3 Hours

# **B.Sc DEGREE (CBCS) EXAMINATION, APRIL 2021**

#### **Sixth Semester**

## **CORE - MM6CRT04 - LINEAR ALGEBRA**

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

2D568F24

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Write 3x3 matrix whose entries are given by  $x_{ii} = i + j$
- Prove that a real 2x2 matrix is orthogonal if and only if it is of one of the forms  $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ , 2.  $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$  where  $a^2 + b^2 = 1$
- 3. If V is a vector space over a field F. Prove that a) If  $\lambda x = 0$  then either  $\lambda = 0$  or x = 0 b)  $\forall x \in V, \forall \lambda \in F$  $(-\lambda)x = -(\lambda x) = \lambda(-x)$
- 4. Define span S of a vector space V and Prove that  $\{e_1, e_2, \dots, e_n\}$  is a spanning set of  $\mathbb{R}^n$ .
- Prove that  $\{(1,1,1), (1,2,3), (2,-1,1)\}$  is a basis of  $\mathbb{R}^3$ . 5.
- If  $f:\mathbb{R}^2 o\mathbb{R}^2$  is given by f(a,b)=(b,0), prove that  $Im\,f=Ker\,f.$ 6.
- 7. Define surjective and injective linear mappings.
- Determine the transition matrix from the ordered basis  $\{(1, -1, 1), (1, -2, 2), (1, -2, 1)\}$  of 8.  $\mathbb{R}^3$  to the natural ordered basis of  $\mathbb{R}^3$ .
- Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is 9. meant by index of nilpotency of f.
- Find the eigen values of A =  $\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ 10.
- 11. Define the eigen space and geometric multiplicity associated with the eigen value.
- 12. Define diagonalizable linear map and diagonalizable matrix.

 $(10 \times 2 = 20)$ 

#### Part B

Answer any six questions.



Page 1/3

Each question carries 5 marks.

| 13. | Reduce to Hermite form $   \begin{bmatrix}     1 & 2 & 1 & 2 & 1 \\     2 & 4 & 4 & 8 & 4 \\     3 & 6 & 5 & 7 & 7 \end{bmatrix} $                                                                                                                                                                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14. | Determine whether or not the matrices are row equivalent. $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & -1 \\ -3 & -2 & 3 \end{bmatrix}$                                                                                                                         |
| 15. | a)Show that the matrix $\begin{bmatrix} 1 & 3 & 4 & 7 \\ 2 & 3 & 5 & 8 \\ 1 & 4 & 5 & 9 \end{bmatrix}$ has neither a left inverse nor a right inverse.                                                                                                                                                                            |
|     | b)Prove that if A and B are invertible matrix , then $(AB)^{-1} = B^{-1}A^{-1}$                                                                                                                                                                                                                                                   |
| 16. | Prove that the set of lower triangular nxn matrices is a subspace of the vector space                                                                                                                                                                                                                                             |
| 17. | a) Define rank and nullity of a linear mapping. Find the rank and nullity of $pr_1 : \mathbb{R}^3 \to \mathbb{R}$ defined by $pr_1(x, y, z) = x$ .<br>b) Let $V$ and $W$ be vector spaces each of dimension $n$ over a field $F$ . If $f : V \to W$ is linear, then prove that $f$ is surjective if and only if $f$ is bijective. |
| 18. | Prove that a square matrix is invertible if and only if it represents an isomorphism.                                                                                                                                                                                                                                             |
| 19. | Define similar matrices. Prove that for every $\vartheta \in \mathbb{R}$ , the complex matrices $\begin{bmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{bmatrix}$ , $\begin{bmatrix} e^{i\vartheta} & 0 \\ 0 & e^{-i\vartheta} \end{bmatrix}$ are similar.                                      |
| 20. | Find the eigen values and a basis of each of the corresponding eigen space $\begin{bmatrix} -7 & 1 & -1 \\ -7 & 1 & -1 \\ -6 & 6 & -6 \end{bmatrix}$                                                                                                                                                                              |
| 21. | $\begin{bmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                   |
|     | For the nXn tridiagonal matrix An = $\begin{bmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{bmatrix}$ Prove that det An = n                                        |
|     |                                                                                                                                                                                                                                                                                                                                   |

+ 1.

(6×5=30)

#### Part C

Answer any **two** questions.

Each question carries **15** marks.

22. a)Find the row rank of the matrix  $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & -1 & 1 \\ 5 & 4 & -2 & 2 \end{bmatrix}$ 

b)Prove that the rows  $x_{1,}x_{2},...,x_{p}$  where  $p \ge 2$  are linearly dependent if and only if one of the  $x_{i}$  can be expressed as a linear combination of the other.

c)Prove that elementary row operations do not affect row rank.





23. a)Prove that the set W of complex matrices of the form  $\begin{bmatrix} \alpha & \beta \\ -\bar{\beta} & -\alpha \end{bmatrix}$  is a real vector space of dimension 4.

b) If V is a vector space over C of dimension n, prove that V is a vector space over R of dimension 2n .c) If S is a subset of V then prove that S is a basis if and only if S is a maximal independent subset.

24. a) Define linear mapping from a vector space to a vector space. If  $f: V \to W$  is linear, then define direct image of X under f and inverse image of Y under f, for every subset X of V and for every subset Y of W.

b) Prove that direct image of X under f and inverse image of Y under f, are inclusion-preserving.

c) Prove that direct image of X under f and inverse image of Y under f, carries subspaces to subspaces.

25. Show that  $\{(1,1,0), (1,0,1), (0,1,1)\}$  is a basis of  $\mathbb{R}^3$ . If  $f : \mathbb{R}^3 \to \mathbb{R}^2$  is linear and such that  $f(1,1,0) = (1,2), \quad f(1,0,1) = (0,0), \quad f(0,1,1) = (2,1),$  determine f(x,y,z) for all  $(x,y,z) \in \mathbb{R}^3$ .

(2×15=30)