

QP CODE: 21100168

Reg No : Name :

B.Sc DEGREE (CBCS) EXAMINATION, FEBRUARY 2021

Fifth Semester

Core Course - MM5CRT03 - ABSTRACT ALGEBRA

B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

9F863599

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Write two examples for non structural property of a binary structure $\langle S, * \rangle$.
- 2. Define general linear group of degree n.
- Define proper subgroup and improper subgroup of a group G . 3.
- 4. Define a **permutation of a set**. Compute $\sigma\tau$ where σ and τ are permutations given by $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}.$
- Express the permutation $\sigma=\left(egin{array}{cccccc} 1&2&3&4&5&6&7&8\\ 3&1&4&7&2&5&8&6 \end{array}
 ight)$ in S_8 as a product of 5. transpositions.
- If $n \geq 2$, then prove that the collection of all even permutations of 6. $\{1, 2, 3, \dots, n\}$ forms a subgroup of the symmetric group S_n .
- 7. Prove that the order of an element of a finite group divides the order of the group.
- Check whether $f: (M_n(\mathbb{R}), +) \to (\mathbb{R}, +)$ defined by f(A) = det(A) is a group 8. homomorphism or not.
- 9. Let G be a group and H be normal subgroup of G. Find the identity element in the factor group G/H.

Page 1/3

- Define a unit in a ring R , Find the units in Z_{10} 10.
- Define zero divisors $% \left({{Z_{12}}} \right)$. Find the divisors of $\left. {{Z_{12}}} \right.$ 11.

12. Define a factor ring .

(10×2=20)

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. Let F be the set of all real-valued functions f having domain \mathbb{R} , the set of real numbers. Define addition, subtraction, multiplication and composition of such functions, and state whether F is closed under these operations.
- 14. a) Give the group table for the binary operation *addition modulo 2* on the set \mathbb{Z}_2 . b) Give the group table for a binary operation * on the set $\{e, a, b\}$.
- 15. State and prove Division Algorithm for \mathbb{Z} .
- 16. Let G be a group. Prove that the permutations $\rho_a: G \to G$, where $\rho_a(x) = xa$ for $a \in G$ and $x \in G$, do form a group isomorphic to G.
- 17. Let H be a subgroup of a group G. Let the relation \sim_L be defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$. Then show that \sim_L is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
- 18. Let G be a group. Show that Aut(G), the set of all automorphisms of G forms a group under function composition.
- 19. Obtain the converse statement of Lagranges theorem. Show that converse of Lagranges theorem is not true in general.
- 20. Check whether nZ with usual addition and multiplication is a ring.
- 21. Show that $a = \{x \in R / ax = 0\}$ is an ideal of R, R is a commutative ring and $a \in R$

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and let $b = a^s$. Then prove that b generates a cyclic subgroup H of G containing n/d elements, where d is the gcd of n and s. Also prove that $\langle a^s \rangle = \langle a^t \rangle$ if and only if gcd (s, n) = gcd (t, n).
- 23. Prove in two methods (from linear algebra and by counting orbits) that no permutation in S_n can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.

24. State and prove fundamental homomorphism theorem.

a)Let R be commutative ring with unity of characteristic 4, Compute and simplify

25.
$$(a + b)^4$$
 for $a, b \in R$

- b) Prove that every field F is an integral domain.
- c) Prove that every finite integral domain is a field

(2×15=30)