QP CODE: 21100168

Reg No :
Name :

B.Sc DEGREE (CBCS) EXAMINATION, FEBRUARY 2021

Fifth Semester

Core Course - MM5CRT03 - ABSTRACT ALGEBRA

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science

2017 Admission Onwards
9F863599
Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions. Each question carries $\mathbf{2}$ marks.

1. Write two examples for non structural property of a binary structure $\langle S, *\rangle$.
2. Define general linear group of degree n.
3. Define proper subgroup and improper subgroup of a group G.
4. Define a permutation of a set. Compute $\sigma \tau$ where σ and τ are permutations given by $\sigma=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1\end{array}\right)$ and $\tau=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1\end{array}\right)$.
5. Express the permutation $\sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 2 & 5 & 8 & 6\end{array}\right)$ in S_{8} as a product of transpositions.
6. If $n \geq 2$, then prove that the collection of all even permutations of $\{1,2,3, \cdots, n\}$ forms a subgroup of the symmetric group S_{n}.
7. Prove that the order of an element of a finite group divides the order of the group.
8. Check whether $f:\left(M_{n}(\mathbb{R}),+\right) \rightarrow(\mathbb{R},+)$ defined by $f(A)=\operatorname{det}(A)$ is a group homomorphism or not.
9. Let G be a group and H be normal subgroup of G . Find the identity element in the factor group G / H.
10. Define a unit in a ring R , Find the units in Z_{10}
11. Define zero divisors. Find the divisors of Z_{12}
12. Define a factor ring .
$(10 \times 2=20)$

Part B

Answer any six questions.
Each question carries 5 marks.
13. Let F be the set of all real-valued functions f having domain \mathbb{R}, the set of real numbers. Define addition, subtraction, multiplication and composition of such functions, and state whether F is closed under these operations.
14. a) Give the group table for the binary operation addition modulo 2 on the set \mathbb{Z}_{2}.
b) Give the group table for a binary operation $*$ on the set $\{e, a, b\}$.
15. State and prove Division Algorithm for \mathbb{Z}.
16. Let G be a group. Prove that the permutations $\rho_{a}: G \rightarrow G$, where $\rho_{a}(x)=x a$ for $a \in G$ and $x \in G$, do form a group isomorphic to G.
17. Let H be a subgroup of a group G. Let the relation \sim_{L} be defined on G by $a \sim_{L} b$ if and only if $a^{-1} b \in H$. Then show that \sim_{L} is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
18. Let G be a group. Show that $\operatorname{Aut}(G)$, the set of all automorphisms of G forms a group under function composition.
19. Obtain the converse statement of Lagranges theorem. Show that converse of Lagranges theorem is not true in general.
20. Check whether $n Z$ with usual addition and multiplication is a ring.
21. Show that $\mathrm{Ia}=\{x \in R / a x=0\}$ is an ideal of R, R is a commutative ring and $a \in R$

Part C

Answer any two questions.
Each question carries 15 marks.
22. Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and let $b=a^{s}$. Then prove that b generates a cyclic subgroup H of G containing n / d elements, where d is the gcd of n and s.
Also prove that $\left\langle a^{s}\right\rangle=\left\langle a^{t}\right\rangle$ if and only if $\operatorname{gcd}(s, n)=\operatorname{gcd}(t, n)$.
23. Prove in two methods (from linear algebra and by counting orbits) that no permutation in S_{n} can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
24. State and prove fundamental homomorphism theorem.
a)Let R be commutative ring with unity of characteristic 4 , Compute and simplify
25. $(\mathrm{a}+\mathrm{b})^{4}$ for $a, b \in R$
b) Prove that every field F is an integral domain.
c) Prove that every finite integral domain is a field

