|--|--|

Reg No	:	
Name	:	

M Sc DEGREE (CSS) EXAMINATION, JULY 2021

Fourth Semester

Faculty of Science

CORE - ME010402 - ANALYTIC NUMBER THEORY

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 Admission Onwards

B052CF42

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Define Euler Totient function $\phi(n)$. Also prove that $\phi(n)$ is even for $n \ge 3$.
- 2. State Euler's summation formula and define Riemann zeta function.
- 3. Explain the mutual visible lattice points. State a necessary and sufficient condition for two lattice points (a, b) and (m, n) to be mutually visible.
- 4. Derive Euler's summation formula from Abel's identity.
- 5. Write any four equivalent forms of the prime number theorem.
- 6. (a) If $ac \equiv bc \pmod{m}$ and if d = (m, c), then prove that $a \equiv b \pmod{\frac{m}{d}}$. (b) If c > 0 then prove that $a \equiv b \pmod{m}$ if and only if $ac \equiv bc \pmod{mc}$.
- 7. Define residue class a modulo m and prove that for a given modulus m the m residue classes $\hat{1}, \hat{2}, \ldots, \hat{m}$ are disjoint and their union is the set of all integers.
- 8. If $\{a_1, a_2, \dots, a_{\phi(m)}\}$ is a reduced residue system modulo m and if (k, m) = 1 then prove that $\{ka_1, ka_2, \dots, ka_{\phi(m)}\}$ is also a reduced residue system modulo m.
- 9. Define quadratic residues. Find the quadratic nonresidues for p = 13.
- 10. (a) Define $exp_m(a)$.

(b) Let $m \ge 1$ and (a, m) = 1. Then prove that $a^k \equiv a^h \pmod{m}$ if and only if $k \equiv h \pmod{m}$, where $f = exp_m(a)$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. Prove that if both g and f * g are multiplicative then f is multiplicative.
- (a) Prove that if f is multiplicative then Σ_{d|n}μ(d)f(d) = Π_{p|n}(1 − f(p)).
 (b)State and prove the associative property relating ∘ and *.
- 13. Show that the n^{th} prime P_n satisfies the inequality $\frac{1}{6}n \log n < P_n < 12(n \log n + n \log \frac{12}{e}), \forall n \ge 1$.
- 14. Show that (i) $\sum_{n \leq a} \psi(\frac{x}{n}) = x \log x x + O(\log x)$ and (ii) $\sum_{n \leq a} \psi(\frac{x}{n}) = x \log x x + O(x)$.
- 15. Given a prime p, let $f(x) = c_0 + c_1 x + \dots + c_n x^n$ be a polynomial of degree n with integer coefficients such that $c_n \neq 0 \pmod{p}$. Then prove that polynomial congruence $f(x) \equiv 0 \pmod{p}$ has at most n solutions.
- **16.** Find all x which simultaneously satisfy the system of congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{5}$.
- 17. Prove that (-1|p) = -1 if p = 4m + 3 for some integer m. Also write a formula for (2|p) when p is an odd prime.
- 18. Let g be a primitive root mod p, where p is an odd prime. Then prove that the even powers $g^2, g^4, \ldots, g^{p-1}$ are the quadratic residues and the odd powers g, g^3, \ldots, g^{p-2} are the quadratic nonresidues mod p.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- (a)For x ≥ 1 prove that \$\$|∑n≤x^{μ(n)}| ≤ 1\$ with equality holding only if x < 2.
 (b)Prove that for every x ≥ 1, [x]! = Πp≤𝔅^{α(p)}, where the product is extended over all primes ≤ x, and α(p) = ∑m=[1 / pn].
 (c) If x ≥ 2, prove that log[x]! = x log x x + O(log x).
- 20. Let $\{a(n)\}$ be a nonnegative sequence such that $\sum_{n \leq x} a(n) [\frac{x}{n}] = x \log x + O(x)$ for all $x \geq 1$. Then prove the following (a) $\forall x \geq 1$, we have $\sum_{n < x} \frac{a(n)}{n} = \log x + O(1)$.
 - (b) There is a constant B such that $\sum_{n \leq d} p(n) \leq Bx, \forall x \geq 1$.
 - (c) There is a constant A > 0 and an $x_0 > 0$ such that $\sum_{n \leq x} a(n) \geq Ax, \forall x \geq x_0$.
- 21. (a) Prove that for a given integer k > 0 there exist a lattice point (a, b) such that none of the lattice points (a+r, b+s), $0 < r \le k$, $o < s \le k$, isvisible from the origin.

(b) Let f be a polynomial with integer coefficients, let m_1, \ldots, m_r be positive integers relatively prime in pairs, and let $m = m_1 m_2 \ldots m_r$. Prove that the congruence $f(x) \equiv 0 \pmod{m}$ has a solution if and only if each of the congruences $f(x) \equiv 0 \pmod{m}$ is a solution. Also show that if v(m) and $v(m_i)$ denote the number of solutions of $f(x) \equiv 0 \pmod{m}$ and $f(x) \equiv 0 \pmod{m}$ for $i = 1, \ldots, r$, respectively, then $v(m) = v(m_1)v(m_2)\ldots v(m_r)$.

22. Assume n is not congruent to 0(modp) and consider the least positive residues mod p of the following $\frac{p-1}{2}$ multiples of $n: n, 2n, 3n, \ldots, \frac{p-1}{2}n$. Then if m denotes the number of these residues which exceed $\frac{p}{2}$, prove that $(n|p) = (-1)^m$.

(2×5=10 weightage)

