Q. P. Code:

BHARATA MATA COLLEGE, THRIKKAKARA FIRST INTERNAL EXAMINATION, JANUARY 2020 M.Sc. MATHEMATICS, Semester IV <u>ANALYTIC NUMBER THEORY</u>

TIME: $1^{1}/_{2}$ Hrs

Max. Weight: 15

Section A Answer any 4 Questions Each question carries 1 weight

- 1. Prove that Dirichlet multiplication is commutative.
- 2. Prove that $\varphi(mn) = \varphi(m)\varphi(n)$ if (m, n) = 1.
- 3. If f is multiplicative, prove that f(1) = 1.
- 4. Find a formula for the Bell series of Mobius function μ .
- 5. Define divisor function $\sigma_{\alpha}(n)$. Interpret $\sigma_0(n)$ and $\sigma_1(n)$ in terms of divisors of n.

(4x1=4)

Section B Answer any 3 Questions Each question carries 2 weight

- 6. Prove that the Mobius function $\mu(n)$ is multiplicative.
- 7. For arithmetical functions α and β , prove that $\alpha \circ (\beta \circ F) = (\alpha * \beta) \circ F$.
- 8. If α has a Dirichlet inverse α^{-1} , then prove that $G(x) = \sum_{n \le x} \alpha(n) F\left(\frac{x}{n}\right)$ if and only if $F(x) = \sum_{n \le x} \alpha(n) F\left(\frac{x}{n}\right)$

 $\sum_{n\leq x} \alpha^{-1}(n) G\left(\frac{x}{n}\right).$

9. Prove that the Mangoldt function $\Lambda(n) = \sum_{d/n} \mu(d) \log\left(\frac{n}{d}\right) = -\sum_{d/n} \mu(d) \log d$.

(3x2=6)

Section C Answer any 1 Question Each question carries 5 weight

- 10. If f is multiplicative, then prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n)f(n)$.
- 11. State and prove Euler's summation formula.

(5x1=5)

4MMPG2