

Reg. No.....

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2020

Second Semester

Faculty of Science Branch I (a)—Mathematics MT 02 C10—REAL ANALYSIS (2012–2018 Admissions)

Time : Three Hours

Maximum Weight : 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Explain the terms bounded variation and total variation of a function f defined on [a,b].
- 2. Is the function $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ if $x \neq 0$, f(0) = 0 is of bounded variation. Justify your answer.
- 3. Define Riemann-Stieltjes integral of a function f with respect to α over [a,b].
- 4. Show that if $f, g \in \mathbf{R}(\alpha)$ on [a, b], then $f g \in \mathbf{R}(\alpha)$ on [a, b].
- 5. Suppose $\{f_n\}$ is a sequence of functions defined on E and suppose $|f_n(x)| \le \mu_n, x \in E$ and $n = 1, 2, \ldots$, show that $\sum f_n$ converges uniformly on E if $\sum \mu_n$ converges.
- 6. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2 x}$. On what interval does the series converge uniformly.

Turn over

- 7. Define Fourier series of an integrable function on $[-\pi, \pi]$.
- 8. Show that $\lim_{x \to \infty} x^n e^{-x} = 0$ for every *n*.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. If f and g are each of bounded variation on [a,b], show that their sum, difference and product are also of bounded variations on [a,b]. Also show that $V_{f \pm g} \leq V_f + V_g$ and $V_{f \cdot g} \leq AV_f + BV_g$, Where $A = \sup\{|g(x)|: x \in [a,b]\}$ and $B = \sup\{|f(x)|: x \in [a,b]\}$.
- 10. Establish the additive property of the arc length.
- 11. Show that $f \in \mathbb{R}(\alpha)$ on [a,b] if and only for every $\epsilon > 0$, there exists a partition P such that $U(p,f,\alpha)-L(p,f,\alpha) < t$.
- 12. Establish integration by parts.
- 13. State and prove Cauchy criterion for uniform convergence.
- 14. Show that $\mathscr{C}(X)$, the set of all complex valued, continuous bounded functions on a metric space X is a complete metric space with respect to the norm defined by $|| f || = \sup_{x \in X} |f(x)|$.

15. Suppose that the series
$$\sum_{n=0}^{\infty} C_n x^n$$
 converges for $|x| < R$ and define $f(x) = \sum_{n=0}^{\infty} C_n x^n$ for $|x| < R$.

Show that the series $\sum_{n=0}^{\infty} C_n x^n$ converges uniformly on $[-R + \epsilon, R - \epsilon]$ for any $\epsilon > 0$ and the

function f is continuous and differentiable in (-R, R) and also $f'(x) = \sum_{n=1}^{\infty} nC_n x^{n-1}$, |x| < R.

16. Establish the algebraic completeness property of the complex field.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. Establish the additive property of total variation.
- 18. (a) If $f_1 \in \mathbb{R}(\alpha)$ and $f_2 \in \mathbb{R}(\alpha)$ on [a,b], show that $f_1 + f_2 \in \mathbb{R}(\alpha)$ and $cf \in \mathbb{R}(\alpha)$ for every constant c.
 - (b) State and prove fundamental theorem of calculus.
- 19. Assume α increases monotonically and $\alpha' \in \mathbb{R}$ on [a,b], f be a bounded real function on [a,b].

Show that
$$f \in \mathbf{R}(\alpha)$$
 iff $f\alpha' \in \mathbf{R}$. Also show that $\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx$.

- 20. (a) Suppose k is a compact set and (a) {f_n} is a sequence of continuous functions on k;
 (b) {f_n} converges pointwise to a continuous function f on k; (c) f_n(x)≥f_{n+1}(x) for all x ∈ k, n = 1,2,..., then show that f_n → f uniformly on k.
 - (b) Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathbb{R}(\alpha)$ on [a,b] for n = 1, 2, 3, ... and

suppose $f_n \to f$ uniformly on [a,b]. Show that $f \in \mathbb{R}(\alpha)$ on [a,b] and $\int_a^b f \, d\alpha = \lim_{x \to \infty} \int_a^b f_n \, d\alpha$.

- 21. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some x_0 on [a,b]. If $\{f_n'\}$ converges uniformly on [a,b], then show that $\{f_n\}$ converges uniformly on [a, b] to a function f and $f'(x) = \lim_{x \to \infty} f'_n(x)$.
- 22. State and prove Parseval's theorem.

 $(3 \times 5 = 15)$

