20000969

Time : Three Hours

1 / 6

1/3

Part A

Answer any **five** questions. Each question has 1 weight.

- 1. Eliminate the constants *a* and *b* from the equation $2z = (ax + y)^2 + b$.
- 2. Eliminate the arbitrary function *f* from the equation z = f(x y).
- 3. Find a complete integral of the equation pq = 1.
- 4. Show that the equations xp = yq, z(xp + yq) = 2xy are compatible.
- 5. Find a particular integral of the equation $(D^2 D^1)z = e^{x+y}$.
- 6. Deduce the equation $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form.
- 7. Explain exterior Neumann problem.
- 8. Explain interior Dirichlet's problem.

Reg. No.....

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2020

Second Semester

Faculty of Science

Branch I (a)—Mathematics

MT 02 C09—PARTIAL DIFFERENTIAL EQUATIONS

(2012-2018 Admissions)

Maximum Weight : 30

 $(5 \times 1 = 5)$

Turn over

20000969

Part B

Answer any **five** questions. Each question has 2 weight.

- 9. Solve the equation $(x^2z y^3) dx + 3xy^2 dy + x^3 dz = 0$ first showing that it is integrable.
- 10. Find the integral curves of the equation $\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+y^2}$.
- 11. Find a complete integral of $(p^2 + q^2)x = pz$ and deduce the solution which passes through the curve $x = 0, z^2 = 4y$.
- 12. Solve $z^2 = pqxy$ by Jacobi's method.
- 13. Verify that the equation $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \frac{2z}{x}$ is satisfied by $z = \frac{1}{x} \phi(y-x) + \phi'(y-x)$ where ϕ is an arbitrary function.
- 14. Find a particular integral of the equation $(D^2 D^1)z = 2y x^2$.
- 15. Prove that $r \cos \theta$ and $r^{-2} \cos \theta$ satisfy Laplace's equations, where r, θ, ϕ are spherical polar co-ordinates.
- 16. Establish a necessary condition for the existence of the solution of the interior Neumann problem.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has 5 weight.

17. Verify that the equation $z(z+y^2)dx + z(z+x^2)dy - xy(x+y)dz = 0$ is integrable and find its primitive.

- 18. Find the general integrals of the linear partial differential equation px(x+y) = qy(x+y) (x-y)(2x+2y+z).
- 19. Write down and integrate completely the equations for the characteristics of $(1+q^2)z = px$ expressing x, y, z and p in terms of ϕ , where $q = \tan \phi$ and determine the integral surface which passes through the parabola $x^2 = 2z, y = 0$.
- 20. Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p x)(q y)$ which passes through the *x*-axis.
- 21. Deduce the equation $y^2 \frac{\partial^2 z}{\partial x^2} 2xy \frac{\partial^2 z}{\partial x \partial y} + x^2 \frac{\partial^2 z}{\partial y^2} = \frac{y^2}{x} \frac{\partial z}{\partial x} + \frac{x^2}{y} \frac{\partial z}{\partial y}$ to canonical form and hence solve it.
- 22. Solve the equation $rq^2 2pqs + tp^2 = pt qs$.

 $(3 \times 5 = 15)$

