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Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.
 

1.  Prove that an analytic function in a region  whose derivative vanishes identically must reduce to a constant. 

2.  Find the fixed points of the linear transforma�on   . 

3.  State Cauchy's theorem for a rectangle.

4.  State Cauchy's theorem for a disk.

5.  Define winding number of a closed curve  with respect to a point.

6.  State the Cauchy’s integral formula for higher deriva�ves. Evaluate .

7.  Prove that the func�on  with a removable singularity at z = a  can be extended to a unique analy�c func�on at z
= a.

8.  Define the poles of a func�on. Give an example of a func�on having a triple pole.

9.  State the general form of Cauchy’s theorem.

10.  Write a comment on Cauchy's principle value of an integral. 
(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.
 

11.  Show that   and   correspond to diametrically opposite points on the Riemann sphere if   and only if  .

12.  Prove that a sequence of complex numbers is convergent if and only if it is a Cauchy sequence.

13.  State and prove the necessary and sufficient conditions under which a line integral depends only on its end points.
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14.  Characterise rectifiable arcs.

15.  Show that the func�on which is analy�c in the whole plane and has a non essen�al singularity at reduces to
a polynomial.

16.  Let  be a nonconstant analy�c  func�on in a region   and has no zeros in . Prove  that   takes the
minimum value on the boundary of .

17.  Prove that a region obtained from a simply connected region by removing n points has the connectivity n+1 and find
a homology basis.

18.  How many roots does the equation  have in the disc ?
(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.
 

19.  (i) Find the Linear Transformation which carries    into   .  

(ii)Show that the cross ratio   is real if and only if the four points lie on a circle or on a straight line.

20.  1.  State and prove the representation formula. 

2.  Compute .

21.  (a) State and prove the theorem on local correspondence.  
(b) Prove that a nonconstant analytic function maps open sets onto open sets.

22.  Let  be analytic except for isolated singularities  in a region . Then prove that 
, for any cycle  which is homologues to zero in  and does not pass

through any of the points .
(2×5=10 weightage)
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