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Part A

Answer any five questions.

Each question carries 1 weight.

1. Prove that a convergent sequence is bounded.

2. Define a power series and state Hadamard’s formula for the radius of convergence.

3. Define equicontinuous and normal family of functions.

4. State Arzela’s theorem.

5. Show that the function x  is sub-harmonic.

6. State Schwarz-Christoffel formula.

7. Show that sum of the residues of an elliptic function is zero.

8. Define homotopy of two arcs.

(5 × 1 = 5)

Part B

Answer any five questions.

Each question carries 2 weight.

9. State and prove Cauchy Criterion for uniform convergence of a sequence of functions.

10. Establish Jensen’s formula.
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11. Show that 
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12. Prove that on entire function of fractional order assumes every finite value infinitely many

times.

13. Establish Harnack’s inequality.

14. Prove that a continuous function v z  is sub-harmonic in  if and only if it statistics the inequality
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15. Define Weierstrass  function. Obtain the differential equation satisfied by  function.

16. Explain the terms germs and sheaves associated with analytic continuation.

(5 × 2 = 10)

Part C

Answer any three questions.

Each question carries 5 weight.

17. Define Gamma function. Show that 1 .z z z  Obtain Legendre’s duplication formula.

18. Explain the Taylor and Laurent Series development.

19. (a) For Re 1,s  show that 
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’s
 are ascending sequence of

primes.

(b) Prove that the zeta function  can be extended to a meromorphic function in the whole plane

whose only pole is a simple pole at s = 1 with residue 1.

20. State and prove Riemann Mapping Theorem.
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21. Prove that there exists a basis 1 2,w w  such that the ratio 2 1T = /w w  statistics the following

conditions :

(a) 1 T 0.m

(b)
1 1

– Re T .
2 2

(c) T 1.

(d) Re T 0 if T 1.

Also the ratio T is uniquely determined by these conditions and there is a choice of two, four or six

corresponding bases.

22. State and prove Mittag-Leffler Theorem.

(3 × 5 = 15)
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