Q. P. Code: 2MMPG2

BHARATA MATA COLLEGE, THRIKKAKARA FIRST INTERNAL EXAMINATION JAN. 2020 M.Sc. MATHEMATICS, SEM.- II ADVANCED TOPOLOGY

TIME: $1^{1}/_{2}$ Hrs.

Max. Weight:15

Section A Answer any 4 Questions Each question carries 1 weight

- 1. Prove that a compact subset in Hausdorff space is closed.
- 2. Let A be any subset of a space X and let $f: A \to R$ be continuous. Then any two extensions of f to X agree on \overline{A} .
- 3. Define box and large box.
- 4. Prove that intersection of any family of boxes is a box.
- 5. Let $\sum_{n=1}^{\infty} M_n$ be a convergent series of non negative real numbers. Suppose $\{f_n\}$ is a sequence of real valued functions on a space X such that for each $x \in X$ and $n \in N$ $|f_n(x)| \le M_n$. Then the series $\sum_{n=1}^{\infty} f_n$ converges uniformly to a real valued function on X.

Section B Answer any 3 Questions Each question carries 2 weight

- 6. Show that every regular, Lindeloff space is normal.
- 7. Let X be a Hausdorff space, $x \in X$ and F be compact subset of X not containing x. Then \exists open sets U, V such that $x \in U$ and $U \cap V = \emptyset$.
- 8. For any sets Y,I and J, $(Y^I)^J = Y^{I \times J}$ upto a set theoretic equivalence.
- 9. Let X be a topological space and (Y,d) be a metric space , $\{f_n\}$ is a sequence of functions from X to Y which converges uniformly to $f: X \to Y$. Then if each f_n is continuous, so is f.

Section C Answer any 1 Question Each question carries 5 weight

- 10. If a topological space X is normal then it has the property that for every 2 mutually disjoint closed subsets A,B of X, \exists a continuous function $f: X \to [0,1]$ such that $f(x) = 0 \forall x \in A \text{ and } f(x) = 1 \forall x \in B$.
- 11. State and prove Tieze characterization of normality theorem.