

QP CODE: 21000546

Reg	No	:	

Name

M Sc DEGREE (CSS) EXAMINATION, MARCH 2021

Third Semester

Faculty of Science

CORE - CH500303 - SPECTROSCOPIC METHODS IN CHEMISTRY

M Sc CHEMISTRY, M Sc ANALYTICAL CHEMISTRY, M Sc APPLIED CHEMISTRY , M Sc PHARMACEUTICAL CHEMISTRY, M Sc POLYMER CHEMISTRY

2019 Admission Onwards

6F18F775

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Briefly explain about ORD and CD.
- 2. Explain briefly about the fingerprint region in IR spectroscopy.
- 3. Arrange the following in the increasing order of their carbonyl stretching frequencies: cyclohexanone, cyclopentanone, cyclopropenone.
- 4. Explain the term Chemical shift. What is its unit?
- 5. What is anisotropic effect in NMR?
- 6. What do you meant by virtual coupling.
- 7. What are Lanthanide shift reagents? Give example. Write their mechanism.
- 8. What is the importance of off diagonal peaks in COSY experiment? Illustrate with an example.
- 9. Explain Nitrogen Rule.
- 10. A hydrocarbon with molecular mass C7H12 (M+ at m/e 96) shows large peaks at m/e 54 and due to M-15. What structure can be assigned to the compound?

(8×1=8 weightage)

Page 1/3

Turn Over

Part B (Short Essay/Problems)

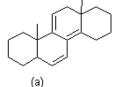
Answer any six questions.

Weight 2 each.

- 11. The π - π * transition of ethylene occurs at 170 nm, while butadiene absorbs at 217 nm. Explain.
- 12. Write a note on field effect on IR spectrum of organic compounds.
- 13. Explain AB, ABC and AMX type splitting in NMR.
- 14. Write a note on dueterioration in NMR spectroscopy?
- 15. Explain DEPT with Suitable example.
- 16. Deduce the structure of the molecules from the proton NMR data
 - (a) $C_5H_{10}O_2$. 1HNMR data, δ 4.1(q, J=7Hz), 2.2(q, J=7Hz), 1.1(t, J=7Hz), 1.25(t, J=7Hz)
 - (b) $C_5H_{10}O_2$. 1HNMR data, δ 3.6(s), 2.2(t, J=7Hz), 1.6(m), 0.9(t, J=7Hz)
- 17. Deduce the feasible structures for the compound whose mass spectra have ions at the following M/Z values. Base peak first.Discuss the fragmentation pattern.

C1₀H₂₀O m/z 57, 81, 67, 56, 82, 83, 41, 123, 99

- 18. State whether the following pairs of compounds could be distinguished by the examination of their IR spectra. Give reasons.
 - (a) PhCH₂NH₂ and PhCONH₂
 - (b) NH₂-C₆H₄-CO₂Me and Me-C₆H₄-CONH₂


(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (a) Systematically write down the procedure to calculate λ_{max} of compounds usnig Woodward-Fieser Rules.
 - (b) Find out the λ_{max} value of the following compounds

(4)

20. Write a note on the mechanism of coupling with special reference to Dirac model.

- 21. Discuss the various ionasiation methods used in mass spectrometry.
- 22. Predict the structure of the compound (MF C₁₁H₂₀O₄) which gave the following spectral data.

 $UV-No\;\lambda_{max}\;above\;200\;nm$

IR: 1740 cm⁻¹.

 $^{1}HNMR:\,\delta\,4.2~(4H,\,q),\,3.3~(1H,\,t),\,1.9~(2H,\,q),\,1.33~(4H,\,m),\,1.27~(6H,\,t)~and~0.9~(3H,\,t)~ppm.$

 ^{13}C NMR: δ $\,$ 14.10, 13.81, 22.4, 28.5, 29.5, 52.0, 61.1 and 169.3 ppm.

Mass: m/z 216 (M^{+} .), 171, 160 (100%), 133 and 115.

(2×5=10 weightage)

